Skip to main content
Log in

Singular robustly chain transitive sets are singular volume partial hyperbolic

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

For diffeomorphisms or for non-singular flows, there are many results relating properties persistent under \(\mathcal{C}^1\) perturbations and a global structures for the dynamics (such as hyperbolicity, partial hyperbolicity, dominated splitting). However, a difficulty appears when a robust property of a flow holds on a set containing recurrent orbits accumulating a singular point. In Bonatti (Star flows and multisingular hyperbolicity. arXiv:1705.05799, 2017) with Christan Bonatti we propose a a general procedure for adapting the usual hyperbolic structures to the singularities. Using this tool, we recover the results in Bonatti et al. (Ann Math 158(2):355–418, 2003) for flows, showing that robustly chain transitive sets have a weak form of hyperbolicity. allowing us to conclude as well the kind of hyperbolicity carried by the examples in Bonatti et al. (J Inst Math Jussieu 12(3):449–501, 2013) (a robust chain transitive singular attractor with periodic orbits of different indexes). Along with the results in [8], this shows that the way we propose to interpret the effect of singularities, has the potential to adapt to other settings in which there is coexistence of singularities and regular orbits with the goal of re-obtaining the results that we already know for diffeomorphisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alongi, J.M.: Gail Susan Nelson Recurrence and Topology, Volume 85 of Graduate studies in mathematics, ISBN 0821884050, 9780821884058

  2. Bochi, J., Bonatti, C.: Perturbation of the Lyapunov spectra of periodic orbits. Proc. Lond. Math. Soc. 105(1), 1–48 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Bonatti, C., Crovisier, S.: Recurrence et genericité. Invent. Math. 158, 33–104 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Bonatti, C., Díaz, L.J., Pujals, E.R.: A C\(^{1}\)-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources. Ann. Math. 158(2), 355–418 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Bonatti, C., Díaz, L.J., Viana, M.: Dynamics Beyond Uniform Hyperbolicity. A Global Geometric and Probabilistic Perspective. Encyclopaedia of Mathematical Sciences, vol. 102. Springer, Berlin, Heidelberg (2005)

  6. Bonatti, C., Gan, S., Yang, D.: Dominated chain recurrent classes with singularities. arXiv:1106.3905

  7. Bonatti, C., Gourmelonn, N., Vivier, T.: Perturbations of the derivative along periodic orbits. Ergod. Theory Dyn. Syst. 26(5), 1307–1337 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Bonatti, C., da Luz, A.: Star flows and multisingular hyperbolicity (2017). arXiv:1705.05799

  9. Bonatti, C., Li, M., Yang, D.: A robustly chain transitive attractor with singularities of different indices. J. Inst. Math. Jussieu 12(3), 449–501 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Bautista, S., Morales, C.A.: On the intersection of sectional-hyperbolic sets. arXiv:1410.0657

  11. Bonatti, C., Pumariño, A., Viana, M.: Lorenz attractors with arbitrary expanding dimension. C. R. Acad. Sci. Paris Sér. I Math. 325(8), 883–888 (1997)

    MathSciNet  MATH  Google Scholar 

  12. Bonatti, C., Viana, M.: SRB measures for partially hyperbolic systems whose central direction is mostly contracting. Israel J. Math. 115, 157–193 (2000)

    MathSciNet  MATH  Google Scholar 

  13. Conley, C.: Isolated Invariant Sets and the Morse Index. CBMS Regional Conference Series in Mathematics, vol. 38. American Mathematical Society, Rhode Island (1978)

  14. Crovisier, S.: Periodic orbits and chain-transitive sets of C1-diffeomorphisms. Publ. Math. Inst. Hautes études Sci. 104, 87–141 (2006)

    MATH  Google Scholar 

  15. Doering, C.I.: Persistently transitive vector fields on three-dimensional manifolds. Dynamical systems and bifurcation theory (Rio de Janeiro, 1985), 59–89, Pitman Res. Notes Math. Ser., 160, Longman Sci. Tech., Harlow (1987)

  16. de Melo, W.: Structural stability of diffeomorphisms on two-manifolds. Invent. Math. 21, 233–246 (1973)

    MathSciNet  MATH  Google Scholar 

  17. Díaz, L.J., Pujals, E., Ures, R.: Partial hyperbolicity and robust transitivity. Acta Math. 183(1), 1–43 (1999)

    MathSciNet  MATH  Google Scholar 

  18. Gan, S., Yang, D.: Morse-Smale systems and horseshoes for three-dimensional singular flows. arXiv:1302.0946

  19. Gan, S., Wen, L., Zhu, S.: Indices of singularities of robustly transitive sets. Discr. Contin. Dyn. Syst. 21, 945–957 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Guckenheimer, J.: A strange, strange attractor. The Hopf Bifurcation Theorems and its Applications, Applied Mathematical Series, 19, Springer, New York, pp. 368–381 (1976)

    Google Scholar 

  21. Guchenheimer, J., Williams, R.: Structural stability of Lorenz attractors. Inst. Hautes Etudes Sci. Publ. Math. 50, 59–72 (1979)

    MathSciNet  Google Scholar 

  22. Hayashi, S.: Diffeomorphisms in \(F^1(M)\) satisfy Axiom A. Ergod. Theory Dyn. Syst. 12, 233–253 (1992)

    MATH  Google Scholar 

  23. Hayashi, S.: Connecting invariant manifolds and the solution of the \(C^1\) stability conjecture and \(\omega \)-stability conjecture for flows. Ann. Math. 145, 81–137 (1997)

    MathSciNet  Google Scholar 

  24. Katok, A.: Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. Inst. Hautes Etudes Sci. Publ. Math. 51, 137–173 (1980)

    MathSciNet  MATH  Google Scholar 

  25. Li, M., Gan, S., Wen, L.: Robustly transitive singular sets via approach of an extended linear Poincaré flow. Discr. Contin. Dyn. Syst. 13(2), 239–269 (2005)

    MATH  Google Scholar 

  26. Liao, S.: On \((\eta, d)\)-contractible orbits of vector fields. Syst. Sci. Math. Sci. 2, 193–227 (1989)

    MathSciNet  MATH  Google Scholar 

  27. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    MathSciNet  MATH  Google Scholar 

  28. Mañé, R.: An ergodic closing lemma. Ann. Math. (2) 116, 503–540 (1982)

    MathSciNet  MATH  Google Scholar 

  29. Mañé, R.: Contributions to the stability conjecture. Topology 17(4), 383–396 (1978)

    MathSciNet  MATH  Google Scholar 

  30. Mañé, R.: A proof of the \(C^1\) stability Conjecture. Publ. Math. IHES 66, 161–210 (1988)

    MATH  Google Scholar 

  31. Metzger, R., Morales, C.: On sectional-hyperbolic systems. Ergodic Theory Dyn. Syst. 28, 1587–1597 (2008)

    MathSciNet  MATH  Google Scholar 

  32. Morales, C., Pacifico, M., Pujals, E.: Robust transitive singular sets for 3-?ows are partially hyperbolic attractors or repellers. Ann. Math. (2) 160, 375–432 (2004)

    MathSciNet  MATH  Google Scholar 

  33. Palis, J., Smale, S.: Structural stability theorems, in 1970 Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I, pp. 223–231 (1970)

  34. Pliss, V.: A hypothesis due to Smale. Differ. Equ. 8, 203–214 (1972)

    MATH  Google Scholar 

  35. Pugh, C., Shub, M.: \(\omega \)-stability for flows. Invent. Math. 11, 150–158 (1970)

    MathSciNet  MATH  Google Scholar 

  36. Pugh, C., Shub, M.: Ergodic elements of ergodic actions. Compos. Math. 23, 115–122 (1971)

    MathSciNet  MATH  Google Scholar 

  37. Robbin, J.W.: A structural stability theorem. Ann. Math. (2) 94, 447–493 (1971)

    MathSciNet  MATH  Google Scholar 

  38. Robinson, C.: Structural stability of \(C^1\) diffeomorphisms. J. Differ. Equ. 22(1), 28–73 (1976)

    MATH  Google Scholar 

  39. Shub, M.: Topologically transitive diffeomorphisms on \(T^4\). In: Dynamical Systems, volume 206 of Lecture Notes in Math., lecture (16) pp. 28–29 and lecture (22) pp. 39, Springer, New York (1971)

  40. Shi, Y., Gan, S., Wen, L.: On the singular hyperbolicity of star flows. J. Mod. Dyn. 8(2), 191–219 (2014). https://doi.org/10.3934/jmd.2014.8.191

    MathSciNet  MATH  Google Scholar 

  41. Smale, S.: The \(\omega \)-stability theorem, in 1970 Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., pp. 289–297 (1970)

  42. Vivier, T.: Flots robustement transitifs sur les variétés compactes. Comptes Rendus Acad. Sci. Paris 337, 791–796 (2003)

    MathSciNet  MATH  Google Scholar 

  43. Wen, L.: On the C1 stability conjecture for flows. J. Differ. Equ. 129, 334–357 (1996)

    Google Scholar 

  44. Wen, L., Xia, Z.: C1 connecting lemmas. Trans. Am. Math. Soc. 352, 5213–5230 (2000)

    MATH  Google Scholar 

  45. Yang, D., Zhang, Y.: On the finiteness of uniform sinks. J. Differ. Equ. 257, 2102–2114 (2014). [32] S

    MathSciNet  MATH  Google Scholar 

  46. Yang, J.: Lyapunov stable homoclinic classes. IMPA A565 (2007). arXiv:0712.0514

Download references

Acknowledgements

This work was done in the context of the authorś PHD thesis (under the supervention of Christian Bonatti and Martin Sambarino). The author would like to thank Christian Bonatti, Martin Sambario, Rafael Potrie and Sylvain Crovisier for their comments and suggestions. The author was supported by the ecole doctorale Carnot Pasteur, Centro de Matemáticas UdelaR, ANII FCE,and CAP UdelaR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana da Luz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Luz, A. Singular robustly chain transitive sets are singular volume partial hyperbolic. Math. Z. 294, 687–712 (2020). https://doi.org/10.1007/s00209-019-02291-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-019-02291-z

Keywords

Mathematics Subject Classification

Navigation