Skip to main content

Advertisement

Log in

On the rigidity of Riemannian–Penrose inequality for asymptotically flat 3-manifolds with corners

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper we prove a rigidity result for the equality case of the Penrose inequality on 3-dimensional asymptotically flat manifolds with nonnegative scalar curvature and corners. Our result also has deep connections with the equality cases of Theorem 1 in Miao (Commun Math Phys 292(1):271–284, 2009) and Theorem 1.1 in Lu and Miao (Minimal hypersurfaces and boundary behavior of compact manifolds with nonnegative scalar curvature, arXiv:1703.08164v2, 2017).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Andersson, L., Cai, M., Galloway, G.J.: Rigidity and positivity of mass for asymptotically hyperbolic manifolds. Ann. Henri Poincaré 9(1), 1–33 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnowitt, R., Deser, S., Misner, C.W.: Coordinate invariance and energy expressions in general relativity. Phys. Rev. 122(3), 997–1006 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  3. Biquard, O.: Continuation unique à partir de l’infini conforme pour les métriques d’Einstein. Math. Res. Lett. 15(6), 1091–1099 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bray H.: The Penrose inequality in general relativity and volume comparison theorems involving scalar curvature. Ph.D. thesis, Stanford University (1997). arXiv:0902.3241

  5. Bray, H.: Proof of the Riemannian Penrose inequality using the positive mass theorem. J. Differ. Geom. 59(2), 177–267 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bray, H., Lee, D.: On the Riemannian Penrose inequality in dimensions less than eight. Duke Math. J. 148(1), 81–106 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chrúsciel, P., Delay, E.: Unique continuation and extensions of Killing vectors at boundaries for stationary vacuum space-times. J. Geom. Phys. 61(8), 1249–1257 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Corvino, J.: Scalar curvature deformation and a gluing construction for the Einstein constraint equations. Comm. Math. Phys. 214(1), 137–189 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, P.-N., Zhang, X.: Rigidity theorem for surfaces in Schwarzschild manifold. arXiv:1802.00887

  10. Eichmair, M., Metzger, J.: Large isoperimetric surfaces in initial data sets. J. Differ. Geom. 94, 159–186 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gilbarg, G., Trudinger, N.: Elliptic partial differential equations of second order. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  12. Huisken, G., Ilmanen, T.: The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differ. Geom. 59(3), 353–437 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lu, S.Y., Miao, P.Z.: Minimal hypersurfaces and boundary behavior of compact manifolds with nonnegative scalar curvature (2017). arXiv:1703.08164v2

  14. Lu, S.Y., Miao, P.Z.: Variational and rigidity of quasi-local mass. arXiv:1802.10070v2

  15. Mccormick, S., Miao, P.Z.: On a Penrose-like inequality in dimensions less than eight. arXiv:1701.04805

  16. McFeron, D., Székelyhidi, G.: On the positive mass theorem for manifolds with corners. Comm. Math. Phys. 313(2), 425–443 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Meeks, W., Yau, S.T.: Topology of three-dimensional manifolds and the embedding problems in minimal surface theory. Ann. of Math. (2) 112(3), 441–484 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  18. Miao, P.Z.: Positive mass theorem on manifolds admitting corners along a hypersurface. Adv. Theor. Math. Phys. 6, 1163–1182 (2002)

    Article  MathSciNet  Google Scholar 

  19. Miao, P.Z.: On a localized Riemannian Penrose inequality. Comm. Math. Phys. 292(1), 271–284 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schoen, R., Yau, S.T.: On the proof of the positive mass conjecture in general relativity. Comm. Math. Phys. 65(1), 45–76 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shi, Y.G., Tam, L.F.: Scalar curvature and singular metrics. Pacific J. Math. 293(2), 427–470 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Simon, L.: Lectures on Geometric Measure Theory. In: Proceedings of the centre for mathematical analysis, ANU, vol. 3 (1983)

  23. Wolter, F.-E.: Distance function and cut loci on a complete Riemannian manifold. Arch. Math. (Basel) 32(1), 92–96 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuguang Shi.

Additional information

Y. Shi and H. Yu: Research partially supported by NSFC 11671015 and NSFC 11731001.

W. Wang: Research partially supported by National Postdoctoral Program for Innovative Talents of China 201700007 and NSFC 11701326.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Wang, W. & Yu, H. On the rigidity of Riemannian–Penrose inequality for asymptotically flat 3-manifolds with corners. Math. Z. 291, 569–589 (2019). https://doi.org/10.1007/s00209-018-2095-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-018-2095-0

Keywords

Mathematics Subject Classification

Navigation