Skip to main content
Log in

On multiplicity in restriction of tempered representations of p-adic groups

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We establish an equality between two multiplicities: one in the restriction of tempered representations of a p-adic group to its closed subgroup with the same derived group; and one occurring in their corresponding component groups in Langlands dual sides, so-called \(\mathcal {S}\)-groups, under working hypotheses about the tempered local Langlands conjecture and the internal structure of tempered L-packets. This provides a formula of the multiplicity for p-adic groups by means of dimensions of irreducible representations of their \(\mathcal {S}\)-groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, J.D., Prasad, D.: On certain multiplicity one theorems. Israel J. Math. 153, 221–245 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arthur, J.: A note on $L$-packets, Pure Appl. Math. Q. 2(1), Special Issue: In honor of John H. Coates. Part 1, 199–217 (2006)

  3. Arthur, J.: The endoscopic classification of representations. American Mathematical Society Colloquium Publications, vol. 61, American Mathematical Society, Providence, RI, Orthogonal and symplectic group (2013)

  4. Asgari, M., Choiy, K.: The local Langlands conjecture for $p$-adic $\text{ GSpin }_4$, $\text{ GSpin }_6$, and their inner forms. Forum Math. 29(6), 1261–1290 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aubert, A.-M., Baum, P., Plymen, R., Solleveld, M.: The local Langlands correspondence for inner forms of ${\rm SL}_{\rm n}$. Res. Math. Sci. 3(32), 34 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Ban, D., Choiy, K., Goldberg, D.: ${\rm R}$-group and multiplicity in restriction for unitary principal series of ${\rm GSpin}$ and ${\rm Spin}$, GANITA, Springer Proceedings in Mathematics & Statistics, in honour of Professor Kumar Murty’s 60th Birthday, to appear (2018)

  7. Ban, D., Choiy, K., Goldberg, D.: ${\rm R}$-groups for unitary principal series of ${\rm Spin}$ groups, In preparation (2018)

  8. Borel, A.: Automorphic L-Functions. In: Proceedings of Symposia in Pure Mathematics, vol. 33, Part 2, pp. 27–61. American Mathematical Society, Providence, RI (1979)

  9. Chao, K.F., Li, W.-W.: Dual $R$-groups of the inner forms of SL (N). Pacific J. Math. 267(1), 35–90 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Choiy, K.: The local Langlands conjecture for the p-adic inner form of ${\rm Sp}(4)$. Int. Math. Res. Not. 2017(6), 1830 (2017)

    MathSciNet  MATH  Google Scholar 

  11. Choiy, K., Goldberg, D.: Transfer of $R$-groups between $p$-adic inner forms of ${\rm SL}_{\rm n}$. Manuscripta Math. 146(1–2), 125–152 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gan, W.T., Takeda, S.: The local Langlands conjecture for Sp(4). Int. Math. Res. Not. IMRN 15, 2987–3038 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gelbart, S.S., Knapp, A.W.: $L$-indistinguishability and $R$ groups for the special linear group. Adv. in Math. 43(2), 101–121 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Harris, M., Taylor, R.: The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ, 2001, With an appendix by Vladimir G. Berkovich

  15. Henniart, G.: Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique. Invent. Math. 139(2), 439–455 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hiraga, K., Saito, H.: On $L$-packets for inner forms of ${\rm SL}_{\rm n}$, Mem. Amer. Math. Soc. 215(1013) (2012)

  17. James, G., Liebeck, M.: Representations and characters of groups, 2nd edn. Cambridge University Press, New York (2001)

    Book  MATH  Google Scholar 

  18. Kaletha, T.: Genericity and contragredience in the local Langlands correspondence. Algebra Number Theory 7(10), 2447–2474 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kaletha, T.: Epipelagic $L$-packets and rectifying characters. Invent. Math. 202(1), 1–89 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kaletha, T.: The local Langlands conjectures for non-quasi-split groups, pp. 217–257. Simons Symposia, Springer, Families of Automorphic Forms and the Trace Formula (2016)

  21. Kaletha, T.: Rigid inner forms of real and $p$-adic groups. Ann. of Math. (2) 184(2), 559–632 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kaletha, T.: Global rigid inner forms and multiplicities of discrete automorphic representations, Invent. Math., to appear (2018)

  23. Karpuk, D.A.: Cohomology of the Weil group of a $p$-adic field. J. Number Theory 133(4), 1270–1288 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Keys, C.D.: L-indistinguishability and R-groups for quasisplit groups: unitary groups in even dimension. Ann. Sci. École Norm. Sup. (4) 20(1), 31–64 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  25. Konno, T.: A note on the Langlands classification and irreducibility of induced representations of $p$-adic groups. Kyushu J. Math. 57(2), 383–409 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kottwitz, R.E.: Stable trace formula: cuspidal tempered terms. Duke Math. J. 51(3), 611–650 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kottwitz, R.E.: Stable trace formula: elliptic singular terms. Math. Ann. 275(3), 365–399 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kottwitz, R.E.: Isocrystals with additional structure. II. Compositio Math. 109(3), 255–339 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Labesse, J.-P., Langlands, R.P.: $L$-indistinguishability for SL(2). Can. J. Math. 31(4), 726–785 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  30. Labesse, J.-P.: Cohomologie, $L$-groupes et fonctorialité. Compositio Math. 55(2), 163–184 (1985)

    MathSciNet  MATH  Google Scholar 

  31. Langlands, R.P.: Representations of abelian algebraic groups, Pacific J. Math. no. Special Issue, 231–250, Olga Taussky-Todd: in memoriam (1997)

  32. Platonov, V., Rapinchuk, A.: Algebraic groups and number theory, pure and applied mathematics, vol. 139. Academic Press Inc., Boston (1994)

    MATH  Google Scholar 

  33. Rodier, F.: Sur le caractère de Steinberg. Compositio Math. 59(2), 147–149 (1986)

    MathSciNet  MATH  Google Scholar 

  34. Rotman, J.J.: An introduction to homological algebra, second ed., Universitext, Springer, New York (2009)

  35. Scholze, P.: The local Langlands correspondence for $\rm {GL}_{\rm n}$ over $p$-adic fields. Invent. Math. 192(3), 663–715 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Shahidi, F.: A proof of Langlands’ conjecture on Plancherel measures; complementary series for $p$-adic groups. Ann. of Math. (2) 132(2), 273–330 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shahidi, F.: Eisenstein series and automorphic \(L\)-functions, American Mathematical Society Colloquium Publications, vol. 58, American Mathematical Society, Providence, RI (2010)

  38. Shelstad, D.: Notes on $L$-indistinguishability (based on a lecture of R. P. Langlands), Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, Am. Math. Soc., Providence, R.I., pp. 193–203 (1979)

  39. Tadić, M.: Notes on representations of non-Archimedean SL(n). Pac. J. Math. 152(2), 375–396 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  40. Xu, B.: On a lifting problem of L-packets. Compos. Math. 152(9), 1800–1850 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yu, J.-K.: On the local Langlands correspondence for tori, Ottawa lectures on admissible representations of reductive $p$-adic groups, Fields Inst. Monogr., vol. 26, Am. Math. Soc., Providence, RI, pp. 177–183 (2009)

Download references

Acknowledgements

The author would like to express his great appreciation to Tasho Kaletha for his insightful comments and fruitful discussions on this work. He is also grateful to Jeff Adler, Wee Teck Gan, Wen-Wei Li, Dipendra Prasad, and Mark Reeder for their valuable suggestions and helpful communications. The author wishes to thank the referee for a careful reading and many valuable comments and suggestions that have led to improvements in the manuscript. This work was partially done during his visit at Max-Planck-Institut für Mathematik, Bonn in June and July 2016. The author thanks the institute for their generous support and stimulating research environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwangho Choiy.

Appendix A. Examples

Appendix A. Examples

We present some examples related to the results established in Section 4. We continue with the notation in the previous sections.

Example A.1

This example is based on [10, Sects. 7.6 and 7.7]. Let \(\widetilde{\mathbf{G}}=\text {G}Sp_{1,1}\) be the non-quasi-split inner form of \(\text {G}Sp_4,\) and let \(\mathbf G=\text {S}p_{1,1}\) be the non-quasi-split inner form of \(\text {S}p_4.\) Let \(\widetilde{\varphi }= \widetilde{\varphi }_0 \oplus (\widetilde{\varphi }_0 \otimes \chi ) \in \Phi (\text {G}Sp_{1,1})\) be given, where \(\chi \) is a quadratic character, \(\widetilde{\varphi }_0 \in \Phi (\text {G}L_2)\) is primitive (by definition, \(\widetilde{\varphi }_0\) is not of the form \(\text {I}nd_{W_E}^{W_F} \tau \) for any non-trivial finite extension E / F and irreducible representation \(\tau \)), and \(\widetilde{\varphi }_0 \not \simeq \widetilde{\varphi }_0 \otimes \chi .\)

We have

$$\begin{aligned} {\text {R}es}^{\text {G}Sp_{1,1}}_{\text {S}p_{1,1}}(\widetilde{\sigma }'_1) = {\text {R}es}^{\text {G}Sp_{1,1}}_{\text {S}p_{1,1}}(\widetilde{\sigma }'_2)= \{ \sigma ' \}, \end{aligned}$$

and \(\widetilde{\sigma }'_2 \simeq \widetilde{\sigma }'_1 \chi .\) Moreover, from the fact that \(X(\widetilde{\varphi }) \simeq \{ \mathbb {1}, \chi \}\) (see [12, Proposition 6.3(iii)(b)]), it follows that

$$\begin{aligned} I(\widetilde{\sigma }'_1) = I(\widetilde{\sigma }'_2) = \{ \mathbb {1} \}. \end{aligned}$$
(A.1)

Thus, the L-packet \(\Pi _{\varphi }({\text {S}p}_{1,1})\) of \(\text {S}p_{1,1}\) attached to the L-parameter \(\varphi \) is \(\{ \sigma ' \}.\) We recall from [10], Sections 7.6 and 7.7] that

$$\begin{aligned} 1 \longrightarrow \mu _2(\mathbb {C}) \longrightarrow S_{\widetilde{\varphi }, \text {s}c}(\widehat{{\text {G}Sp}_{1,1}}) \simeq (\mathbb {Z}/2\mathbb {Z})^2 \longrightarrow S_{\widetilde{\varphi }}(\widehat{{\text {G}Sp}_{1,1}}) \simeq \mathbb {Z}/2\mathbb {Z}\longrightarrow 1, \end{aligned}$$
$$\begin{aligned} 1 \longrightarrow \mu _2(\mathbb {C}) \longrightarrow S_{\varphi , \text {s}c}(\widehat{{\text {S}p}_{1,1}}) \simeq \mathcal {D}_8 \longrightarrow S_{\varphi }(\widehat{{\text {S}p}_{1,1}}) \simeq (\mathbb {Z}/2\mathbb {Z})^2 \longrightarrow 1, \end{aligned}$$

where \(\mathcal {D}_8\) denotes the dihedral group of order 8. Further, we note that \(\mathrm{Irr}(\mathcal {D}_8)\) consists of four 1-dimensional characters and one 2-dimensional irreducible representation. We denote by \(\rho '\) the 2-dimensional irreducible representation. Setting \(\mathrm{Irr}(\mu _2(\mathbb {C}))=\{ \mathbb {1}, \textsf {sgn}\},\) the map \(\sigma ' \mapsto \rho '\) from \(\Pi _{\varphi }({\text {S}p}_{1,1})\) to \(\mathrm{Irr}(S_{\varphi , \text {s}c}(\widehat{{\text {S}p}_{1,1}}), \textsf {sgn})\) provides an equality

$$\begin{aligned} \dim \rho ' = 2, \end{aligned}$$
(A.2)

while the multiplicity \(\langle \sigma ', \widetilde{\sigma }'_i \rangle _{\text {S}p_{1,1}}\) in \({\text {R}es}_{\text {S}p_{1,1}}^{\text {G}Sp_{1,1}}(\widetilde{\sigma }'_i)\) for \(i=1,2\) satisfies

$$\begin{aligned} \langle \sigma ', \widetilde{\sigma }'_i \rangle _{\text {S}p_{1,1}} = 1. \end{aligned}$$
(A.3)

We now consider \((\text {G}Sp_{1,1}(F))_{\sigma '}\) which turns out to be equal to \(\text {G}Sp_{1,1}(F)\) and

$$\begin{aligned} \widetilde{G}/ \widetilde{G}_{\sigma '} = \{1\}. \end{aligned}$$

We also note that

$$\begin{aligned} I(\rho ') = \{ \eta \in \big (\mathcal {D}_8\big /(\mathbb {Z}/2\mathbb {Z})^2\big )^\vee : \rho ' \eta \simeq \rho '\} = \big (\mathcal {D}_8\big /(\mathbb {Z}/2\mathbb {Z})^2\big )^\vee , \end{aligned}$$

which implies that

$$\begin{aligned} (S_{\varphi , \text {s}c}/S_{\widetilde{\varphi }, \text {s}c})^\vee \big / I(\rho '). \end{aligned}$$

Hence, this coincides with Theorem 4.13.

For Theorem 4.17, we first have

$$\begin{aligned} X(\widetilde{\varphi }) = \{1, \chi \} ~~ \text { and } ~~ I(\widetilde{\sigma }') = {1}. \end{aligned}$$

We note that, for any Klein-four subgroup H of \(\mathcal {D}_8\) (in fact, there are two), we have

$$\begin{aligned} {\text {R}es}^{\mathcal {D}_8}_{H}(\rho ') = \{\chi _1, \chi _2\}, \end{aligned}$$

where \(\chi _1\) and \(\chi _2\) are distinct 1-dimensional characters of H,  since the trace of \(\rho '\) vanishes outside such subgroup H (see [17, (20.13)(2)]). Fix \(\chi _1\) corresponding to \(\widetilde{\sigma }'_1\) via the bijection between \(\Pi _{\widetilde{\varphi }}({\text {G}Sp}_{1,1})\) and \(\mathrm{Irr}(\mathcal S_{\widetilde{\varphi }, \text {s}c}(\widehat{{\text {G}Sp}_{1,1}}), \textsf {sgn}).\) Computing the stabilizer \((\mathcal {D}_8)_{\chi _1}=\{s \in \mathcal {D}_8 : {^s}\chi _1 = \chi _1 \} ,\) we have \(\mathcal {D}_8/(\mathcal {D}_8)_{\chi _1} \simeq \mathbb {Z}/2\mathbb {Z}.\) Hence, this coincides with Theorem 4.17.

Lastly, for the multiplicity in the restriction, given a lifting \(\widetilde{\sigma }' \in \Pi _{\widetilde{\varphi }}(\text {G}Sp_{1,1})\) of \(\sigma ' \in \Pi _{\varphi }(\text {S}p_{1,1}),\) we have

$$\begin{aligned} \langle \sigma ', \widetilde{\sigma }' \rangle _{G} = \frac{\dim \rho '}{\dim \chi _1} |\Pi _{\rho '}(S_{\widetilde{\varphi }, \text {s}c})|^{-1} = \frac{2}{1} 2^{-1} = 1, \end{aligned}$$

which coincides with (A.3). Hence, this coincides with Proposition 4.22. This applies to all the others in \(\Pi _{\varphi }(\text {S}p_{1,1}).\)

Example A.2

Let \(\widetilde{\mathbf{G}}=\text {G}Sp_4,\)\(\mathbf G=\text {S}p_{4},\) and \(\widetilde{\varphi }\) be given as above in Example A.1. From [10, Sects. 7.6 and 7.7] we have

$$\begin{aligned} S_{\widetilde{\varphi }}(\widehat{{\text {G}Sp}_{4}}) \simeq \mathbb {Z}/2\mathbb {Z}, \quad S_{\varphi }(\widehat{{\text {S}p}_{4}}) \simeq \mathbb {Z}/2\mathbb {Z}\times \mathbb {Z}/2\mathbb {Z}, \end{aligned}$$
$$\begin{aligned} {\text {R}es}^{{\text {G}Sp}_4}_{{\text {S}p}_4}(\widetilde{\sigma }_1) = \{ \sigma _1^+, \sigma _1^- \}, \quad {\text {R}es}^{{\text {G}Sp}_4}_{{\text {S}p}_4}(\widetilde{\sigma }_2) = \{ \sigma _2^+, \sigma _2^- \}, \end{aligned}$$
$$\begin{aligned} \Pi _{\widetilde{\varphi }}({\text {G}Sp}_4) = \{ \widetilde{\sigma }_1, \widetilde{\sigma }_2 \}, \quad \Pi _{\varphi }({\text {S}p}_4) = \{\sigma _1^+, \sigma _1^-, \sigma _2^+, \sigma _2^- \}. \end{aligned}$$

From the bijection \(\Pi _{\varphi } \overset{1-1}{\longleftrightarrow } \mathrm{Irr}(S_{\varphi }(\widehat{{\text {S}p}_4})),\) we correspond \(\sigma =\sigma _1^+\) to \(\rho =\mathbb {1}.\) Recall that there is a bijection \({\text {G}Sp}_4(F)/({\text {G}Sp}_4(F))_{\sigma } \overset{1-1}{\longleftrightarrow } \Pi _{\widetilde{\sigma }_1}(\text {S}p_4).\) Then we note that

$$\begin{aligned} \{ \eta \in \big (S_{\varphi }(\widehat{{\text {S}p}_{4}})\big /S_{\widetilde{\varphi }}(\widehat{{\text {G}Sp}_{4}})\big )^\vee : \mathbb {1} \eta = \mathbb {1}\} = \{ \mathbb {1} \} \end{aligned}$$

and we have

$$\begin{aligned} {\text {G}Sp}_4(F)\big /({\text {G}Sp}_4(F))_{\sigma } \simeq \mathbb {Z}/2\mathbb {Z}, \end{aligned}$$
$$\begin{aligned} \big (S_{\varphi }\simeq \mathbb {Z}/2\mathbb {Z},(\widehat{{\text {S}p}_{4}})/S_{\widetilde{\varphi }}(\widehat{{\text {S}p}_{4}})\big )^\vee \big / \{ \eta \in \big (S_{\varphi }(\widehat{{\text {S}p}_{4}})/S_{\widetilde{\varphi }}(\widehat{{\text {S}p}_{4}}) \big )^\vee : \mathbb {1} \eta = \mathbb {1}\} \simeq \mathbb {Z}/2\mathbb {Z}. \end{aligned}$$

Hence, this coincides with Theorem 4.13. Moreover, from the bijection \(\Pi _{\widetilde{\varphi }} \overset{1-1}{\longleftrightarrow } \mathrm{Irr}(S_{\widetilde{\varphi }}(\widehat{{\text {G}Sp}_4})),\) we correspond \(\widetilde{\sigma }=\widetilde{\sigma }_1\) to \(\widetilde{\rho }=\mathbb {1}.\) Then we have

$$\begin{aligned} X(\widetilde{\varphi })/\bar{I}(\widetilde{\sigma }) = \{ \mathbb {1} \},~~ S_{\widetilde{\varphi }}(\widehat{{\text {G}Sp}_4})\big /S_{\widetilde{\varphi }}(\widehat{{\text {G}Sp}_4})_{\mathbb {1}} =\{ 1 \}. \end{aligned}$$

Hence, this coincides with Theorem 4.17.

Lastly, for the multiplicity in the restriction, given a lifting \(\widetilde{\sigma }\) of \(\sigma ,\) we have

$$\begin{aligned} \langle \sigma , \widetilde{\sigma }\rangle _{G} = \frac{\dim \mathbb {1}}{\dim \mathbb {1}} |\Pi _{\mathbb {1}}(S_{\widetilde{\varphi }, \text {s}c})|^{-1} = \frac{1}{1} 1^{-1} = 1. \end{aligned}$$

Hence, this coincides with Proposition 4.22. This applies to all the others in \(\Pi _{\varphi }(\text {S}p_4).\)

Example A.3

Let \(\widetilde{\mathbf{G}}=\text {G}L_2,\)\(\mathbf G=\text {S}L_2,\) and \(\widetilde{\varphi }\in \Phi (\widetilde{G})\) be dihedral with respect to three quadratic extensions. Then we have

$$\begin{aligned} S_{\widetilde{\varphi }}(\widehat{{\text {G}L}_2}) = \{ 1 \}, \quad S_{\varphi }(\widehat{{\text {S}L}_2}) \simeq \mathbb {Z}/2\mathbb {Z}\times \mathbb {Z}/2\mathbb {Z}, \end{aligned}$$
$$\begin{aligned} \Pi _{\widetilde{\varphi }}({\text {G}L}_2) = \{ \widetilde{\sigma }\}, \quad {\text {R}es}^{{\text {G}L}_2}_{{\text {S}L}_2}(\widetilde{\sigma }) = \Pi _{\varphi }({\text {S}L}_4) = \{ \sigma _1, \sigma _2, \sigma _3, \sigma _4 \}. \end{aligned}$$

From the bijection \(\Pi _{\varphi } \overset{1-1}{\longleftrightarrow } \mathrm{Irr}(S_{\varphi }(\widehat{{\text {S}L}_2})),\) we correspond \(\sigma =\sigma _1\) to \(\rho =\mathbb {1}.\) Note that there is a bijection \({\text {G}L}_2(F)/({\text {G}L}_2(F))_{\sigma } \overset{1-1}{\longleftrightarrow } \Pi _{\widetilde{\sigma }}(\text {S}L_2).\) We then have

$$\begin{aligned} {\text {G}L}_2(F)\big /({\text {G}L}_2(F))_{\sigma } \simeq \mathbb {Z}/2\mathbb {Z}\times \mathbb {Z}/2\mathbb {Z}, \end{aligned}$$
$$\begin{aligned} \big (S_{\varphi }(\widehat{{\text {S}L}_2})/S_{\widetilde{\varphi }}(\widehat{{\text {S}L}_2})\big )^\vee \big / \{ \eta \in \big (S_{\varphi }(\widehat{{\text {S}L}_2})/S_{\widetilde{\varphi }}(\widehat{{\text {S}L}_2})\big )^\vee : \mathbb {1} \eta = \mathbb {1}\} \simeq \mathbb {Z}/2\mathbb {Z}\times \mathbb {Z}/2\mathbb {Z}. \end{aligned}$$

Hence, this coincides with Theorem 4.13. Moreover, from the bijection \(\Pi _{\widetilde{\varphi }} \overset{1-1}{\longleftrightarrow } \mathrm{Irr}(S_{\widetilde{\varphi }}(\widehat{{\text {G}L}_2})),\) we correspond \(\widetilde{\sigma }=\widetilde{\sigma }_1\) to \(\widetilde{\rho }=\mathbb {1}.\) Then we have

$$\begin{aligned} X(\widetilde{\varphi })/\bar{I}(\widetilde{\sigma }) = \{ \mathbb {1} \},~~ S_{\widetilde{\varphi }}(\widehat{{\text {G}L}_2})\big /S_{\widetilde{\varphi }}(\widehat{{\text {G}L}_2})_{\mathbb {1}} =\{ 1 \}. \end{aligned}$$

Hence, this coincides with Theorem 4.17.

Lastly, for the multiplicity in the restriction, given a lifting \(\widetilde{\sigma }\) of \(\sigma ,\) we have

$$\begin{aligned} \langle \sigma , \widetilde{\sigma }\rangle _{G} = \frac{\dim \mathbb {1}}{\dim \mathbb {1}} |\Pi _{\mathbb {1}}(S_{\widetilde{\varphi }, \text {s}c})|^{-1} = \frac{1}{1} 1^{-1} = 1. \end{aligned}$$

Hence, this coincides with Proposition 4.22. This applies to all the others in \(\Pi _{\varphi }(\text {S}L_2).\)

Remark A.4

From Example A.3, we note that two sizes \(|I(\rho )|=1\) and \(|I(\widetilde{\sigma })|=4\) does not necessarily equal each other. This implies that \(|\Pi _{\widetilde{\sigma }}(G)|=4\) does not need to be identical with \(|\Pi _{\rho }(\mathcal S_{\widetilde{\varphi }, \text {s}c})|=1.\)

Example A.5

Let \(\widetilde{\mathbf{G}}=\text {G}L_1(D),\)\(\mathbf G=\text {S}L_1(D),\) where D is the quaternion division algebra over F,  and \(\widetilde{\varphi }\in \Phi (\widetilde{\mathbf{G}})\) be as in Example A.3. Then we have

$$\begin{aligned} 1 \longrightarrow \mu _2(\mathbb {C}) \longrightarrow S_{\widetilde{\varphi }, \text {s}c}(\widehat{{\text {G}L}_1(D)}) \simeq \mathbb {Z}/2\mathbb {Z}\longrightarrow S_{\widetilde{\varphi }}(\widehat{{\text {G}L}_1(D)}) ={1} \longrightarrow 1, \end{aligned}$$
$$\begin{aligned} 1 \longrightarrow \mu _2(\mathbb {C}) \longrightarrow S_{\varphi , \text {s}c}(\widehat{{\text {S}L}_1(D)}) \simeq Q_8 \longrightarrow S_{\varphi }(\widehat{{\text {S}L}_1(D)}) \simeq \mathbb {Z}/2\mathbb {Z}\times \mathbb {Z}/2\mathbb {Z}\longrightarrow 1, \end{aligned}$$

where \(Q_8\) denotes the quaternion group of order 8. Recall that

$$\begin{aligned} \Pi _{\widetilde{\varphi }}({\text {G}L}_1(D)) = \{ \widetilde{\sigma }'\}, ~~{\text {R}es}^{{\text {G}L}_1(D)}_{{\text {S}L}_1(D)}(\widetilde{\sigma }') = \Pi _{\varphi }({\text {S}L}_1(D)) = \{ \sigma ' \}, \end{aligned}$$
$$\begin{aligned} \mathrm{Irr}(Q_8) = \{ \chi _1, \chi _2, \chi _3, \chi _4, \rho ' \}, \end{aligned}$$

where \(\chi _i\)’s are distinct 1-dimensional representations, and \(\rho '\) is the 2-dimensional representation of \(Q_8.\) From the bijection \(\Pi _{\varphi }(\text {S}L_1(D)) \overset{1-1}{\longleftrightarrow } \mathrm{Irr}(S_{\varphi , \text {s}c}(\widehat{{\text {S}L}_1(D)}), \textsf {sgn}) = \{ \rho ' \},\) we correspond \(\sigma '\) to \(\rho '.\) Note that there is a bijection \({\text {G}L}_1(D)/({\text {G}L}_1(D))_{\sigma '} \overset{1-1}{\longleftrightarrow } \Pi _{\widetilde{\sigma }'}(\text {S}L_1(D)).\) We then have

$$\begin{aligned} {\text {G}L}_1(D)\big /({\text {G}L}_1(D))_{\sigma '} = \{1\},~~ \big (Q_8/(\mathbb {Z}/2\mathbb {Z})\big )^\vee \big / \{ \eta \in \big (Q_8/(\mathbb {Z}/2\mathbb {Z})\big )^\vee : \rho '\eta = \rho '\} \simeq \{ \mathbb {1} \}, \end{aligned}$$

since \(\{ \eta \in (Q_8/(\mathbb {Z}/2\mathbb {Z}))^\vee : \rho '\eta = \rho '\} = \{ \chi _1, \chi _2, \chi _3, \chi _4 \} .\) Hence, this coincides with Theorem 4.13. Moreover, from the bijection \(\Pi _{\widetilde{\varphi }} \overset{1-1}{\longleftrightarrow } \mathrm{Irr}(S_{\widetilde{\varphi }, \text {s}c}(\widehat{{\text {G}L}_1(D)}), \textsf {sgn}),\) we correspond \(\widetilde{\sigma }'\) to \(\textsf {sgn}.\) Then we have

$$\begin{aligned} X(\widetilde{\varphi })/I(\widetilde{\sigma }') = \{ \mathbb {1} \},~~ Q_8/(Q_8)_{\rho '} =\{ 1 \}. \end{aligned}$$

Hence, this coincides with Theorem 4.17.

Lastly, for the multiplicity in the restriction, given a lifting \(\widetilde{\sigma }'\) of \(\sigma ',\) we have

$$\begin{aligned} \langle \sigma ', \widetilde{\sigma }' \rangle _{G} = \frac{\dim \rho '}{\dim \mathbb {1}} |\Pi _{\mathbb {1}}(S_{\widetilde{\varphi }, \text {s}c})|^{-1} = \frac{2}{1} 1^{-1} = 2. \end{aligned}$$

Hence, this coincides with Proposition 4.22. This applies to all the others in \(\Pi _{\varphi }(\text {S}L_1(D)).\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choiy, K. On multiplicity in restriction of tempered representations of p-adic groups. Math. Z. 291, 449–471 (2019). https://doi.org/10.1007/s00209-018-2091-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-018-2091-4

Keywords

Mathematics Subject Classification

Navigation