Skip to main content
Log in

A generalization of Serre’s condition \(\mathrm {(F)}\) with applications to the finiteness of unramified cohomology

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper, we introduce a condition (\(\mathrm {F}_m'\)) on a field K, for a positive integer m, that generalizes Serre’s condition (F) and which still implies the finiteness of the Galois cohomology of finite Galois modules annihilated by m and algebraic K-tori that split over an extension of degree dividing m, as well as certain groups of étale and unramified cohomology. Various examples of fields satisfying (\(\mathrm {F}_m'\)), including those that do not satisfy (F), are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Another definition of unramified cohomology that is frequently encountered is

    $$\begin{aligned} H^i_{\mathrm {nr}} (F(X), \mu _m^{\otimes j}) = H^i (F(X), \mu _m^{\otimes j})_{V_1}, \end{aligned}$$

    where \(V_1\) is the set of all discrete valuations v of F(X) such that F is contained in the valuation ring \(\mathcal {O}_v\). Clearly, there is an inclusion \(H^i_{\mathrm {nr}} (F(X), \mu _m^{\otimes j}) \subset H^i_{\mathrm {ur}} (F(X), \mu _m^{\otimes j})\), which is in fact an equality if X is proper (see [9, Theorem 4.1.1]). Note that by construction, \(H^i_{\mathrm {nr}} (F(X), \mu _m^{\otimes j})\) is a birational invariant of X.

References

  1. Artin, M., Bertin, J.E., Demazure, M., Gabriel, P., Grothendieck, A., Raynaud, M., Serre, J.-P.: SGA 3, Schémas en groupes, Fasc. 3, Exposés 8-11, Institut des Hautes Études Scientifiques, Paris (1964)

  2. Artin, M., Grothendieck, A., Verdier, J.-L.: SGA 4, tome 3, Lecture Notes in Math. Springer, Berlin, Heidelberg, New York (1973)

    Google Scholar 

  3. Bass, H.: Some problems in classical algebraic \(K\)-theory, Algebraic \(K\)-theory, II: “Classical” algebraic \(K\)-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pg 373. Lecture Notes in Math 342, Springer, Berlin (1973)

  4. Bloch, S.: Algebraic \(K\)-theory and classfield theory for arithmetic surfaces. Ann. Math. 114(2), 229–265 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bloch, S., Ogus, A.: Gersten’s conjecture and the homology of schemes. Ann. Sci. École Norm. Sup. 7(4), 181–201 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chernousov, V.I., Rapinchuk, A.S., Rapinchuk, I.A.: Division algebras with the same maximal subfields. Uspekhi Mat. Nauk. 70(1), 89–122 (2015). [English translation: Russian Math. Surveys 70(2015), no. 1, 83-112]

    Article  MathSciNet  MATH  Google Scholar 

  7. Chernousov, V.I., Rapinchuk, A.S., Rapinchuk, I.A.: On some finiteness properties of algebraic groups over finitely generated fields. C.R. Acad. Sci. Paris Ser. I 354, 869–873 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chernousov, V.I., Rapinchuk, A.S., Rapinchuk, I.A.: Spinor groups with good reduction. arXiv:1707.08062

  9. Colliot-Thélène, J.-L.: Birational invariants, purity and the Gersten conjecture, in K-theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, CA, 1992), 164, Proc. Sympos. Pure Math. Part 1, vol. 58, American Mathematical Society, Providence, RI (1995)

  10. Colliot-Thélène, J.-L., Hoobler, R., Kahn, B.: The Bloch-Ogus-Gabber Theorem, Algebraic \(K\)-theory (Toronto, ON, 1996), 3194, Fields Inst. Commun. 16, American Mathematical Society, Providence, RI (1997)

  11. Colliot-Thélène, J.-L., Sansuc, J.-J.: Cohomologie des groupes de type multiplicatif sur les schémas réguliers. C. R. Acad. Sci. Paris Sr. A-B 287(6), A449–A452 (1978)

    MATH  Google Scholar 

  12. Colliot-Thélène, J.-L., Sansuc, J.-J.: Fibrés quadratiques et composantes connexes réelles. Math. Ann. 244(2), 105–134 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  13. Colliot-Thélène, J.-L., Sansuc, J.-J.: La \(R\)-équivalence sur les tores. Ann. Sci. École Norm. Sup. (4) 10(2), 175–229 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  14. Colliot-Thélène, J.-L., Sansuc, J.-J.: Principal homogeneous spaces under flasque tori: applications. J. Algebra 106(1), 148–205 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Colliot-Thélène, J.-L., Sansuc, J.-J., Soulé, C.: Torsion dans le groupe de Chow de codimension deux. Duke Math. J. 50(3), 763–801 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. De Clercq, C., Florence, M.: Lifting Theorems and Smooth Profinite Groups. arxiv:1710.10631

  17. Fehm, A., Jahnke, F.: Fields with almost small absolute Galois group. Israel J. Math. 214(1), 193–207 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fesenko, I.B., Vostokov, S.V.: Local fields and their extensions, Second edition. Translations of Mathematical Monographs 121. American Mathematical Society, Providence, RI (2002)

  19. Garibaldi, S., Merkurjev, A., Serre, J.-P.: Cohomological Invariants in Galois cohomology, University Lecture Series 28, American Mathematical Society , Providence, RI (2003)

  20. Geisser, T.: Finite generation questions for motivic cohomology, available on the author’s website at http://www.math.sci.hokudai.ac.jp/sympo/100809/pdf/geisser.pdf

  21. Gille, P., Szamuely, T.: Central Simple Algebras and Galois Cohomology. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  22. Jannsen, U.: On the structure of Galois groups as Galois modules, Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983), 109–126, Lecture Notes in Math. 1068, Springer, Berlin (1984)

  23. Jannsen, U., Saito, S., Sato, K.: Etale duality for constructible sheaves on arithmetic schemes. J. Reine Angew. Math. 688, 1–65 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kahn, B.: Lower \(\cal{H}\)-cohomology of higher-dimensional quadrics. Arch. Math. (Basel) 65(3), 244–250 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kahn, B., Rost, K., Sujatha, R.: Unramified cohomology of quadrics. I. Amer. J. Math. 120(4), 841–891 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kato, K.: A Hasse principle for two-dimensional global fields. J. Reine Angew. Math. 366, 142–183 (1986)

    MathSciNet  MATH  Google Scholar 

  27. Kato, K., Saito, S.: Unramified class field theory of arithmetical surfaces. Ann. Math. 118(2), 241–275 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kerz, M., Schmidt, A.: Covering data and higher dimensional global class field theory. J. Number Theory 129, 2569–2599 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rost, M.: On the basic correspondence of a splitting variety. https://www.math.uni-bielefeld.de/~rost/basic-corr.html [preprint]

  30. Serre, J.-P.: Galois cohomology. Springer Monographs in Mathematics, Springer, Berlin (2002)

    MATH  Google Scholar 

  31. Voevodsky, V.: Motivic cohomology with \({\mathbb{Z}}/2\)-coefficients. Publ. Math. IHES 98, 59–104 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Voevodsky, V.: On motivic cohomology with \({\mathbb{Z}}/\ell \)-coefficients. Ann.Math. (2) 174(1), 401–438 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Weibel, C.: The norm residue isomorphism theorem. J. Topol. 2(2), 346–372 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous referee for a careful reading of the paper and A. Fehm for communications regarding connections of the paper’s subject matter to field theory and mathematical logic. The author was partially support by an AMS-Simons Travel Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor A. Rapinchuk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rapinchuk, I.A. A generalization of Serre’s condition \(\mathrm {(F)}\) with applications to the finiteness of unramified cohomology. Math. Z. 291, 199–213 (2019). https://doi.org/10.1007/s00209-018-2079-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-018-2079-0

Keywords

Navigation