Skip to main content
Log in

Maximal bottom of spectrum or volume entropy rigidity in Alexandrov geometry

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Li and Wang [J Differ Geom 58:501–534 (2001), J Differ Geom 62:143–162 (2002)] proved a splitting theorem for an n-dimensional Riemannian manifold with \(Ric \ge -(n-1)\) and the bottom of spectrum \(\lambda _0(M)=\frac{(n-1)^2}{4}\). For an n-dimensional compact manifold M with \(Ric\ge -(n-1)\) with the volume entropy \(h(M)=n-1\), Ledrappier and Wang (J Differ Geom 85:461–477, 2010) proved that the universal cover \(\widetilde{M}\) is isometric to the hyperbolic space \(\mathbb {H}^n\). We will prove analogue theorems for Alexandrov spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander, S., Bishop, R.: A cone splitting theorem for Alexandrov spaces. Pac. J. Math. 218, 1–16 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L., Mondino, A., Savaré, G.: On the Bakry–Émery condition, the gradient estimates and the local-to-global property of \(RCD^*(K, N)\) metric measure spaces. J. Geom. Anal. 26, 24–56 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bertrand, J.: Existence and uniqueness of optimal maps on Alexandrov spaces. Adv. Math. 219(3), 838–851 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Björn, A., Björn, J.: Nonlinear potential theory on metric spaces, EMS tracts in mathematics, vol. 17. European Mathematical Society (EMS), Zurich (2011)

    Book  MATH  Google Scholar 

  5. Buckley, S.M., Koskela, P.: Ends of metric measure spaces and Sobolev inequalities. Math. Z. 252(2), 275–285 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Burago, D., Burago, Y., Ivanov, S.: A course in metric geometry, Graduate Studies in Mathematics, vol. 33. AMS (2001)

  7. Burago, Y., Gromov, M., Perel’man, G.: AD Alexandrov spaces with curvature bounded below. Russ. Math. Surv. 47, 1–58 (1992)

    Article  MATH  Google Scholar 

  8. Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9, 428–517 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheeger, J., Colding, T.: Lower bounds on Ricci curvature and the almost rigidity of warped products. Ann. Math. 144, 189–237 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, L., Rong, X., Xu, S.: Quantitive volume rigidity of space form with lower Ricci curvature bound. J. Diff. Geom. (to appear)

  11. Gigli, N.: The splitting theorem in the non-smooth context. arxiv:1302.5555 (2013) (preprint)

  12. Gigli, N.: An overview on the proof of the splitting theorem in non-smooth context. Anal. Geom. Metr. Spaces 2, 169C213 (2014)

    Google Scholar 

  13. Heinonen, J.: Lectures on analysis on metric spaces. Universitext. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  14. Hörmander, L.: The analysis of linear partial differential operators I, 2nd edn. In: Grundlehren der math- ematischen Wissenschaften, 256. Springer, Berlin (1989)

  15. Hua, B., Xia, C.: A note on local gradient estimate on Alexandrov spaces. Tohuku Math. J. 66(2), 259–267 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hua, B., Kell, M., Xia, C.: Harmonic functions on metric measure spaces. arXiv:1308.3607

  17. Ji, L.Z., Li, P., Wang, J.: Ends of locally symmetric spaces with maximal bottom spectrum. J. Reine. Angew. Math. 632, 1–35 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jiang, R.: Lipschitz continuity of solutions of Poisson equations in metric measure spaces. Potential Anal. 37(3), 281–301 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kuwae, K., Machigashira, Y., Shioya, T.: Sobolev spaces, Laplacian and heat kernel on Alexandrov spaces. Math. Z. 238(2), 269–316 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ledrappier, F., Wang, X.: An integral formula for the volume entropy with application to rigidity. J. Diff. Geom. 85, 461–477 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Peter Li.: Geometric analysis, Cambridge studies in advanced mathematics, vol 134. Cambridge University Press, Cambridge, pp x + 406 (2012)

  22. Li, P., Wang, J.: Complete manifolds with positive spectrum I. J. Differ. Geom. 58, 501–534 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, P., Wang, J.: Complete manifolds with positive spectrum II. J. Differ. Geom. 62, 143–162 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, P., Tam, L.F.: Harmonic functions and the structure of complete manifolds. J. Differ. Geom. 35, 359–383 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, G.: A short proof to the rigidity of volume entropy. Math. Res. Lett. 18(1), 151–153 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Manning, A.: Topological entropy for geodesic flows. Ann. Math. 2, 567–573 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mondino, A., Naber, A.: Structure theory of metric measure spaces with lower Ricci curvature bounds I. 1405.2222

  28. Otsu, Y., Shioya, T.: The Riemannian structure of Alexandrov spaces. J. Difer. Geom. 39(3), 629–658 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Perelman, G.: DC structure on Alexandrov spaces, Preprint, preliminary version available online at www.math.psu.edu/petrunin/

  30. Perelman, G., Petrunin, A.: Quasigeodesics and gradient curves in Alexandrov spaces. www.math.psu.edu/petrunin/ (Preprint) (1994)

  31. Petrunin, A.: Subharmonic functions on Alexandrov space. www.math.psu.edu/petrunin/ (1996) (Preprint)

  32. Petrunin, A.: Parallel transportation for Alexandrov spaces with curvature bounded below. Geom. Funct. Anal. 8(1), 123–148 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Petrunin, A.: Harmonic functions on Alexandrov space and its applications. ERA Am. Math. Soc 9, 135–141 (2003)

    MATH  Google Scholar 

  34. Petrunin, A.: Semiconcave functions in Alexandrovs geometry. Surv. Differ. Geom. 11, 137–201 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Petrunin, A.: Alexandrov meets Lott–Villani–Sturm. Munster J. Math. 4, 53–64 (2011)

    MathSciNet  MATH  Google Scholar 

  36. Pigola, S., Rigoli, M., Setti, A.G.: Vanishing and finiteness results in geometric analysis: a generalization of the Bochner technique. Progress in mathematics. Birkhauser, Basel (2008)

    MATH  Google Scholar 

  37. Savaré, G.: Self-improvement of the Bakry–Émery condition and Wasserstein contraction of the heat flow in \(RCD (K,\infty )\) metric measure spaces. Disc. Cont. Dyn. Syst. A 34, 1641–1661 (2014)

    Article  MATH  Google Scholar 

  38. Sturm, K.: Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and \(L^p\)-Liouville properties. J. Reine Angew. Math. 456, 173–196 (1994)

    MathSciNet  MATH  Google Scholar 

  39. Wang, X.: Harmonic functions, entropy, and a characterization of the hyperbolic space. J. Geom. Anal. 18(1), 272–284 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang, H.C., Zhu, X.P.: Ricci curvature on Alexandrov spaces and rigidity theorems. Comm. Anal. Geom. 18(3), 503–554 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang, H.C., Zhu, X.P.: Yau’s gradient estimates on Alexandrov spaces. J. Difer. Geom. 91(3), 445–522 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang, H.C., Zhu, X.P.: Local Li–Yau’s estimates on metric measure spaces. Calc. Var. Partial Differ. Equ. 55(4), 1–30 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to Xiantao Huang, RenJin Jiang, Shicheng Xu and Huichun Zhang for helpful discussions. We also thank Xiaochun Rong for helpful suggestions. The author is partially supported by a fund of China Postdoctoral Science Foundation, no. 2017M620828.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y. Maximal bottom of spectrum or volume entropy rigidity in Alexandrov geometry. Math. Z. 291, 55–84 (2019). https://doi.org/10.1007/s00209-018-2073-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-018-2073-6

Navigation