Skip to main content
Log in

Complete classification of Brieskorn polynomials up to the arc-analytic equivalence

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

It has been recently proved that the arc-analytic type of a singular Brieskorn polynomial determines its exponents. This last result may be seen as a real analogue of a theorem by Yoshinaga and Suzuki concerning the topological type of complex Brieskorn polynomials. In the real setting it is natural to investigate further by asking how the signs of the coefficients of a Brieskorn polynomial change its arc-analytic type. The aim of the present paper is to answer this question by giving a complete classification of Brieskorn polynomials up to the arc-analytic equivalence. The proof relies on an invariant of this relation whose construction is similar to the one of Denef–Loeser motivic zeta functions. The classification obtained generalizes the one of Koike–Parusiński in the two variable case up to the blow-analytic equivalence and the one of Fichou in the three variable case up to the blow-Nash equivalence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. i.e. Polynomials of the form \(\pm x^p\pm y^q\).

  2. i.e. Polynomials of the form \(\pm x^p\pm y^q\pm z^r\).

  3. A Nash function is a smooth function with semialgebraic graph. Such a function is necessarily real analytic.

  4. This is a notion due to Kurdyka [17].

  5. Indeed, Kurdyka proved that a semialgebraic arc-analytic map is real analytic outside a set of codimension at least 2 [17, Théorème 5.2].

  6. A subset S of a real analytic manifold M is arc-symmetric if given a real analytic arc on M, either this arc is entirely included in S or it meets S at isolated points only. This is a notion due to Kurdyka [17].

  7. When \(k_i\) is odd, we could also have fixed that \(\varepsilon _i=1\).

References

  1. Campesato, J.B.: Une fonction zêta motivique pour l’étude des singularités réelles. Ph.D. thesis, Université Nice Sophia Antipolis (2015)

  2. Campesato, J.B.: An inverse mapping theorem for blow-Nash maps on singular spaces. Nagoya Math. J. 223(1), 162–194 (2016). https://doi.org/10.1017/nmj.2016.29

    Article  MathSciNet  MATH  Google Scholar 

  3. Campesato, J.B.: On the arc-analytic type of some weighted homogeneous polynomials. To appear in Journal of the London Mathematical Society (2018)

  4. Campesato, J.B.: From the blow-analytic equivalence to the arc-analytic equivalence: a survey. Saitama Math. J. 31, 35–78 (2017). Proceedings of the Sixth Japanese-Australian Workshop on Real and Complex Singularities http://www.rimath.saitama-u.ac.jp/research/pdf/smj31-3.pdf

  5. Campesato, J.B.: On a motivic invariant of the arc-analytic equivalence. Ann. Inst. Fourier (Grenoble) 67(1), 143–196 (2017). http://aif.cedram.org/aif-bin/fitem?id=AIF_2017__67_1_143_0

    Article  MathSciNet  Google Scholar 

  6. Denef, J., Loeser, F.: Motivic Igusa zeta functions. J. Algebra Geom. 7(3), 505–537 (1998)

    MathSciNet  MATH  Google Scholar 

  7. Fichou, G.: Motivic invariants of arc-symmetric sets and blow-Nash equivalence. Compos. Math. 141(3), 655–688 (2005). https://doi.org/10.1112/S0010437X05001168

    Article  MathSciNet  MATH  Google Scholar 

  8. Fichou, G.: The corank and the index are blow-Nash invariants. Kodai Math. J. 29(1), 31–40 (2006). https://doi.org/10.2996/kmj/1143122384

    Article  MathSciNet  MATH  Google Scholar 

  9. Fichou, G.: Towards a classification of blow-Nash types. In: Singularities and o-minimal category, RIMS Kôkyûroku 1540, pp. 145–151. Kyoto University (2007)

  10. Fukui, T.: Seeking invariants for blow-analytic equivalence. Compos. Math. 105(1), 95–108 (1997). https://doi.org/10.1023/A:1000177700927

    Article  MathSciNet  MATH  Google Scholar 

  11. Fukui, T., Kurdyka, K., Parusiński, A.: Inverse function theorems for arc-analytic homeomorphisms (2010)

  12. Fukui, T., Paunescu, L.: Modified analytic trivialization for weighted homogeneous function-germs. J. Math. Soc. Jpn. 52(2), 433–446 (2000). https://doi.org/10.2969/jmsj/05220433

    Article  MathSciNet  MATH  Google Scholar 

  13. Guibert, G., Loeser, F., Merle, M.: Iterated vanishing cycles, convolution, and a motivic analogue of a conjecture of Steenbrink. Duke Math. J. 132(3), 409–457 (2006). https://doi.org/10.1215/S0012-7094-06-13232-5

    Article  MathSciNet  MATH  Google Scholar 

  14. Henry, J.P., Parusiński, A.: Invariants of bi-Lipschitz equivalence of real analytic functions. In: Geometric singularity theory, Banach Center Publ., vol. 65, pp. 67–75. Polish Acad. Sci. Inst. Math., Warsaw (2004). https://doi.org/10.4064/bc65-0-5

  15. Koike, S., Parusiński, A.: Motivic-type invariants of blow-analytic equivalence. Ann. Inst. Fourier (Grenoble) 53(7), 2061–2104 (2003). http://aif.cedram.org/item?id=AIF_2003__53_7_2061_0

    Article  MathSciNet  Google Scholar 

  16. Kuo, T.C.: On classification of real singularities. Invent. Math. 82(2), 257–262 (1985). https://doi.org/10.1007/BF01388802

    Article  MathSciNet  MATH  Google Scholar 

  17. Kurdyka, K.: Ensembles semi-algébriques symétriques par arcs. Math. Ann. 282(3), 445–462 (1988). https://doi.org/10.1007/BF01460044

    Article  MathSciNet  MATH  Google Scholar 

  18. McCrory, C., Parusiński, A.: Virtual Betti numbers of real algebraic varieties. C. R. Math. Acad. Sci. Paris 336(9), 763–768 (2003). https://doi.org/10.1016/S1631-073X(03)00168-7

    Article  MathSciNet  MATH  Google Scholar 

  19. McCrory, C., Parusiński, A.: The weight filtration for real algebraic varieties. In: Topology of stratified spaces, Mathematical Sciences Research Institute Publications, vol. 58, pp. 121–160. Cambridge University Press, Cambridge (2011)

  20. Parusiński, A.: Topology of injective endomorphisms of real algebraic sets. Math. Ann. 328(1–2), 353–372 (2004). https://doi.org/10.1007/s00208-003-0486-x

    Article  MathSciNet  MATH  Google Scholar 

  21. Parusiński, A., Păunescu, L.: Arc-wise analytic stratification, Whitney fibering conjecture and Zariski equisingularity. Adv. Math. 309, 254–305 (2017). https://doi.org/10.1016/j.aim.2017.01.016

    Article  MathSciNet  MATH  Google Scholar 

  22. Quarez, R.: Espace des germes d’arcs réels et série de Poincaré d’un ensemble semi-algébrique. Ann. Inst. Fourier (Grenoble) 51(1), 43–68 (2001). http://aif.cedram.org/item?id=AIF_2001__51_1_43_0

    Article  MathSciNet  Google Scholar 

  23. Yoshinaga, E., Suzuki, M.: On the topological types of singularities of Brieskorn–Pham type. Sci. Rep. Yokohama Nat. Univ. Sect. I(25), 37–43 (1978)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I am sincerely grateful to Adam Parusiński for our fruitful discussions during the preparation of this article. I express my gratitude and thanks to Toshizumi Fukui who warmly welcomed me in Saitama University where this work has been carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Baptiste Campesato.

Additional information

Research supported by a Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellowship (Short-term) for North American and European Researchers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campesato, JB. Complete classification of Brieskorn polynomials up to the arc-analytic equivalence. Math. Z. 290, 1145–1163 (2018). https://doi.org/10.1007/s00209-018-2056-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-018-2056-7

Keywords

Mathematics Subject Classification

Navigation