Skip to main content
Log in

Chiral vector bundles

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

This paper focuses on the study of a new category of vector bundles. The objects of this category, called chiral vector bundles, are pairs given by a complex vector bundle along with one of its automorphisms. We provide a classification for the homotopy equivalence classes of these objects based on the construction of a suitable classifying space. The computation of the cohomology of the latter allows us to introduce a proper set of characteristic cohomology classes: some of those just reproduce the ordinary Chern classes but there are also new odd-dimensional classes which take care of the extra topological information introduced by the chiral structure. Chiral vector bundles provide a geometric model for topological quantum systems in class AIII, namely for systems endowed with a (pseudo-)symmetry of chiral type. The classification of the chiral vector bundles over spheres and tori (explicitly computable up to dimension 4), recovers the commonly accepted classification for topological insulators of class AIII which is usually based on the K-group \(K_1\). However, our classification turns out to be even richer since it takes care also for possible non-trivial Chern classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The setting described in Definition 1.5 can be generalized to unbounded operator-valued maps \(x\mapsto H(x)\) by requiring the continuity of the resolvent map \(x\mapsto R_z(x):=\big (H(x)-zmathbb {1}\big )^{-1}\in \mathscr {K}(\mathcal {H})\). Another possible generalization is to replace the norm-topology with the open-compact topology as in [31, Appendix D]. However, these kinds of generalizations have no particular consequences for the purposes of this work.

  2. We notice that the second condition in (1.8) can be replaced by the equivalent constraint \(\chi '(x)^2=- mathbb {1}_\mathcal {H}\) under the identification \(\chi =\,{\mathrm{i}}\,\chi '\).

  3. For the precise derivation of the short exact sequences the reader can refer to [25, eq. D8] (and reference therein). Here we used the shorter notational convention

    $$\begin{aligned} F^jH^k\big (X,\mathbb {Z}\big )\;:=\;\mathrm{Ker}\Big (H^k\big (X,\mathbb {Z}\big )\rightarrow H^k\big (X_{j-1},\mathbb {Z}\big )\Big )\;\subset \; H^k\big (X,\mathbb {Z}\big ) \end{aligned}$$

    where \(=X_1\subset X_0\subset X_1\subset \cdots \subset X_p\subset \cdots \subset X\) is a filtration for the space X.

  4. This name is justified by the fact that the Bloch theory for electrons in a crystal (see e. g. [5]) provides some of the most interesting examples of topological quantum systems.

  5. More precisely the Whitehead’s second theorem [2, Theorem 6.4.15] (see also [67, Chapter I, Section 8, Theorem 9]) says that \(\alpha _4\) induces a 5-homology equivalence (see [2, Definition 6.4.10]). At this point the proof that a n-homology equivalence implies a n-cohomology equivalence is provided by the use of the universal coefficient theorem as in [61, Lemma 4.1].

References

  1. Altland, A., Zirnbauer, M.: Non-standard symmetry classes in mesoscopic normal-superconducting hybrid structures. Phys. Rev. B 55, 1142–1161 (1997)

    Article  Google Scholar 

  2. Arkowitz, M.: Introduction to Homotopy Theory. Springer, New York (2011)

    Book  Google Scholar 

  3. Arlettaz, D., Banaszak, G.: On the non-torsion elements in the algebraic \(K\)-theory of rings of integers. J. Reine Angew. Math. 461, 63–79 (1995)

    MathSciNet  MATH  Google Scholar 

  4. Arlettaz, D.: Algebraic \(K\)-Theory of rings from a topological viewpoint. Publ. Mat. 44, 3–84 (2000)

    Article  MathSciNet  Google Scholar 

  5. Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Saunders College Pub, Philadelphia (1976)

    MATH  Google Scholar 

  6. Atiyah, M.F.: \(K\)-theory. W. A. Benjamin, New York (1967)

    MATH  Google Scholar 

  7. Atiyah, M.F., Hopkins, M.I.: A variant of \(K\)-theory: \(K_\pm \). In: Tilllmann, U. (ed.) Topology, Geometry, and Quantum Field Theory, p. 0517. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  8. Bellissard, J.V.: \(K\)-Theory of \(C^*\)-algebras in Solid State Physics. In: Dorlas, T.C., Hugenholtz, M.N., Winnink, M. (eds.) Statistical Mechanics and Field Theory, Mathematical Aspects. Lecture Notes in Physics, vol. 257, pp. 99–156 (1986)

  9. Böhm, A., Mostafazadeh, A., Koizumi, H., Niu, Q., Zwanziger, J.: The Geometric Phase in Quantum Systems. Springer, Berlin (2003)

    Book  Google Scholar 

  10. Borel, A.: Sur la cohomologie des espaces fibres principaux et des espaces homogenes de groupes de Lie compacts. Ann. Math. 57, 115–207 (1953)

    Article  MathSciNet  Google Scholar 

  11. Borel, A.: Topology of Lie groups and characteristic classes. Bull. Am. Math. Soc. 61, 397–433 (1955)

    Article  MathSciNet  Google Scholar 

  12. Bott, R.: The space of loops on a Lie group. Mich. Math. J. 5, 35–61 (1958)

    Article  MathSciNet  Google Scholar 

  13. Bott, R.: The stable homotopy of the classical groups. Ann. Math. 70, 313–337 (1959)

    Article  MathSciNet  Google Scholar 

  14. Bott, R., Tu, L.W.: Differential Forms in Algebraic Topology. Springer, Berlin (1982)

    Book  Google Scholar 

  15. Bourne, C., Carey, A.L., Rennie, A.: A non-commutative framework for topological insulators. Rev. Math. Phys. 28, 1650004 (2016)

    Article  MathSciNet  Google Scholar 

  16. Brown Jr., E.H.: Cohomology theories. Ann. Math. 75, 467–484 (1962)

    Article  MathSciNet  Google Scholar 

  17. Budich, J.C., Trauzettel, B.: From the adiabatic theorem of quantum mechanics to topological states of matter. Phys. Status Solidi RRL 7, 109–129 (2013)

    Article  Google Scholar 

  18. Carpentier, D., Delplace, P., Fruchart, M., Gawȩdzki, K.: Topological index for periodically driven time-reversal invariant 2D systems. Phys. Rev. Lett. 114, 106806 (2015)

    Article  MathSciNet  Google Scholar 

  19. Carpentier, D., Delplace, P., Fruchart, M., Gawȩdzki, K., Tauber, C.: Construction and properties of a topological index for periodically driven time-reversal invariant 2D crystals. Nucl. Phys. B 896, 779–834 (2015)

    Article  Google Scholar 

  20. Chruściński, D., Jamiołkowski, A.: Geometric Phases in Classical and Quantum Mechanics. Birkhäuser, Basel (2004)

    Book  Google Scholar 

  21. Clément, A.: Integral cohomology of finite Postnikov towers, Ph.D. Thesis. Université de Lausanne (2002)

  22. Davis, J.F., Kirk, P.: Lecture Notes in Algebraic Topology. AMS, Providence (2001)

    Book  Google Scholar 

  23. De Nittis, G., Gomi, K.: Classification of “Real” Bloch-bundles: topological quantum systems of type AI. J. Geom. Phys. 86, 303–338 (2014)

    Article  MathSciNet  Google Scholar 

  24. De Nittis, G., Gomi, K.: Classification of “Quaternionic” bloch-bundles: topological insulators of type AII. Commun. Math. Phys. 339, 1–55 (2015)

    Article  Google Scholar 

  25. De Nittis, G., Gomi, K.: Differential geometric invariants for time-reversal symmetric Bloch-bundles: the “Real” case. J. Math. Phys. 57, 053506 (2016)

    Article  MathSciNet  Google Scholar 

  26. De Nittis, G., Gomi, K.: The FKMM-invariant in low dimension. Lett. Math. Phys. (2017) (Accepted, E-print). arXiv:1702.04801

  27. De Nittis, G., Gomi, K.: The cohomological nature of the Fu–Kane–Mele invariant. J. Geom. Phys. 124, 124–164 (2018)

    Article  MathSciNet  Google Scholar 

  28. De Nittis, G., Landi, G.: Generalized TKNN equations. Adv. Theor. Math. Phys. 16, 505–547 (2012)

    Article  MathSciNet  Google Scholar 

  29. Fiorenza, D., Monaco, D., Panati, G.: \(\mathbb{Z}_2\) invariants of topological insulators as geometric obstructions. Commun. Math. Phys. 343, 1115–1157 (2016)

    Article  Google Scholar 

  30. Fomenko, A.T., Fuchs, D.B., Gutenmacher, V.L.: Homotopic Topology. Akadémiai Kiadó, Budapest (1986)

    Google Scholar 

  31. Freed, D.S., Moore, G.W.: Twisted equivariant matter. Ann. Henri Poincaré 14, 1927–2023 (2013)

    Article  MathSciNet  Google Scholar 

  32. Gomi, K.: A variant of K-theory and topological T-duality for Real circle bundles. Commun. Math. Phys. 334, 923–975 (2015)

    Article  MathSciNet  Google Scholar 

  33. Gracia-Bondia, J.M., Varilly, J.C., Figueroa, H.: Elements of Noncommutative Geometry. Birkhäuser, Boston (2001)

    Book  Google Scholar 

  34. Graf, G.M., Porta, M.: Bulk-edge correspondence for two-dimensional topological insulators. Commun. Math. Phys. 324, 851–895 (2013)

    Article  MathSciNet  Google Scholar 

  35. Grossmann, J., Schulz-Baldes, H.: Index pairings in presence of symmetries with applications to topological insulators. Commun. Math. Phys 343, 477–513 (2016)

    Article  MathSciNet  Google Scholar 

  36. Hasan, M.Z., Kane, C.L.: Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010)

    Article  Google Scholar 

  37. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  38. Husemoller, D.: Fibre Bundles. Springer, New York (1994)

    Book  Google Scholar 

  39. James, I., Thomas, E.: An approach to the enumeration problem for non-stable vector bundles. J. Math. Mech. 14, 485–506 (1965)

    MathSciNet  MATH  Google Scholar 

  40. Jänich, K.W.: Topology. Springer, Berlin (1984)

    Book  Google Scholar 

  41. Karoubi, M.: \(K\)-Theory. An Introduction. Springer, New York (1978)

    MATH  Google Scholar 

  42. Kane, C.L., Mele, E.J.: \(\mathbb{Z}_2\) topological order and the quantum spin hall effect. Phys. Rev. Lett. 95, 146802 (2005)

    Article  Google Scholar 

  43. Kato, T.: Perturbation Theory of Linear Operators. Reprint of the 1980 edition. Springer, Berlin (1995)

  44. Kellendonk, J.: On the \(C^*\)-algebraic approach to topological phases for insulators. Ann. Henri Poincaré 18, 2251–2300 (2017)

    Article  MathSciNet  Google Scholar 

  45. Kennedy, R., Guggenheim, C.: Homotopy theory of strong and weak topological insulators. Phys. Rev. B 91, 245148 (2015)

    Article  Google Scholar 

  46. Kennedy, R., Zirnbauer, M.R.: Bott periodicity for \(\mathbb{Z}_2\) symmetric ground states of gapped free-fermion systems. Commun. Math. Phys. 342, 909–963 (2016)

    Article  Google Scholar 

  47. Kervaire, M.A.: Some nonstable homotopy groups of Lie groups. Ill. J. Math. 4, 161–169 (1960)

    Article  MathSciNet  Google Scholar 

  48. Kitaev, A.: Periodic table for topological insulators and superconductors. AIP Conf. Proc. 1134, 22–30 (2009)

    Article  Google Scholar 

  49. Kori, T.: Extensions of current groups on \({S}^3\) and the adjoint representations. J. Math. Soc. Jpn. 66, 819–838 (2014)

    Article  MathSciNet  Google Scholar 

  50. Kubota, Y.: Controlled topological phases and bulk-edge correspondence. Commun. Math. Phys. 349, 493–525 (2017)

    Article  MathSciNet  Google Scholar 

  51. Kuchment, P.: Floquet Theory for Partial Differential Equations. Birkhäuser, Boston (1993)

    Book  Google Scholar 

  52. Lee, H.C.: On Clifford algebras and their representations. Ann. Math. 4, 760–773 (1948)

    Article  Google Scholar 

  53. Lupton, G., Smith, S.B.: Gottlieb groups of function spaces. Math. Proc. Camb. Philos. Soc. 159(1), 61–77 (2015)

    Article  MathSciNet  Google Scholar 

  54. Lundell, A.T.: Concise tables of james numbers and some homotopy of classical lie groups and associated homogeneous spaces. In: Algebraic Topology Homotopy and Group Cohomology. Lecture Notes in Mathematics, vol. 1509, pp. 250–272. Springer, Berlin (1992)

    Chapter  Google Scholar 

  55. May, J.P., Ponto, K.: More Concise Algebraic Topology: Localization, Completion, and Model Categories. University of Chicago Press, Chicago (2012)

    MATH  Google Scholar 

  56. Milnor, J.W.: On axiomatic homology theory. Pac. J. Math. 12, 337–342 (1962)

    Article  MathSciNet  Google Scholar 

  57. Milnor, J.W., Stasheff, J.D.: Characteristic Classes. Princeton University Press, Princeton (1974)

    Book  Google Scholar 

  58. Monaco, D., Tauber, C.: Gauge-theoretic invariants for topological insulators: a bridge between Berry, Wess-Zumino, and Fu-Kane-Mele. Lett. Math. Phys. 107(7), 1315–1343 (2017)

    Article  MathSciNet  Google Scholar 

  59. Palais, R.S.: On the homotopy type of certain groups of operators. Topology 3, 271–279 (1965)

    Article  MathSciNet  Google Scholar 

  60. Percy, A.: Some examples of relations between non-stable integral cohomology operations. Bull. Korean Math. Soc. 47, 275–286 (2010)

    Article  MathSciNet  Google Scholar 

  61. Peterson, F.P.: Some remarks on Chern classes. Ann. Math. 69, 414–420 (1959)

    Article  MathSciNet  Google Scholar 

  62. Prodan, E., Schulz-Baldes, H.: Non-commutative odd Chern numbers and topological phases of disordered chiral systems. J. Funct. Anal. 271, 1150–1176 (2016)

    Article  MathSciNet  Google Scholar 

  63. Prodan, E., Schulz-Baldes, H.: Bulk and boundary invariants for complex topological insulators: from K-theory to physics. Springer Series Mathematical Physics Studies. Springer, Switzerland (2016)

    Book  Google Scholar 

  64. Qi, X.-L., Zhang, S.-C.: Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011)

    Article  Google Scholar 

  65. Ryu, S., Schnyder, A.P., Furusaki, A., Ludwig, A.W.W.: Topological insulators and superconductors: tenfold way and dimensional hierarchy. New J. Phys. 12, 065010 (2010)

    Article  Google Scholar 

  66. Schnyder, A.P., Ryu, S., Furusaki, A., Ludwig, A.W.W.: Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B 78, 195125 (2008)

    Article  Google Scholar 

  67. Spanier, E.H.: Algebraic Topology. McGraw-Hill, New York (1966)

    MATH  Google Scholar 

  68. Steenrod, N.E.: The Topology of Fibre Bundles. Princeton University Press, Princeton (1951)

    Book  Google Scholar 

  69. Stiepan, H.-M., Teufel, S.: Semiclassical Approximations for Hamiltonians with Operator-Valued Symbols. Commun. Math. Phys. 320, 821–849 (2012)

    Article  MathSciNet  Google Scholar 

  70. Swan, R.G.: Vector bundles and projective modules. Trans. Am. Math. Soc. 105, 264–277 (1962)

    Article  MathSciNet  Google Scholar 

  71. Teufel, S.: Adiabatic Perturbation Theory in Quantum Dynamics. Lecture Notes in Mathematics, vol. 1821. Springer, Berlin (2003)

  72. Thiang, G.C.: A note on homotopic versus isomorphic topological phases. (2015) (E-print). arXiv:1412.4191

  73. Thiang, G.C.: On the \(K\)-theoretic classification of topological phases of matter. Ann. Henri Poincaré 17, 757–794 (2016)

    Article  MathSciNet  Google Scholar 

  74. Wannier, G.H.: The structure of electronic excitation levels in insulating crystals. Phys. Rev. 52, 191–197 (1937)

    Article  Google Scholar 

  75. Witten, E.: Current algebra, baryons, and quark confinement. Nucl. Phys. B 223, 433–444 (1983)

    Article  MathSciNet  Google Scholar 

  76. Witten, E.: \(D\)-branes and \(K\)-theory. JHEP 12, 019 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

GD wishes to thank A. Verjovsky and G. Thiang for many stimulating discussions. GD’s research is supported by the grant Iniciación en Investigación 2015\(\text {N}^{\text {o}}\) 11150143 funded by FONDECYT. KG’s research is supported by the JSPS KAKENHI Grant Number 15K04871.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe De Nittis.

Appendices

Appendix A. Topology of unitary groups and Grassmann manifolds

Homotopy. The complete determination of the homotopy groups of the unitary groups \(\mathbb {U}(m)\) is still an open problem. The first homotopy groups are showed in Table 3.

Table 3 First homotopy groups for the unitary groups

The homotopy of the Palais unitary group \(\mathbb {U}(\infty )\) is described by the Bott periodicity (see Sect. 3.1).

From the fiber sequence \(\mathrm{S}\mathbb {U}(m)\rightarrow \mathbb {U}(m){\mathop {\rightarrow }\limits ^\mathrm{det}}\mathbb {U}(1)\) one obtains the isomorphisms

$$\begin{aligned} \pi _k\big (\mathbb {U}(m)\big )\;\simeq \;\pi _k\big (\mathbb {S}^1\big )\;\oplus \; \pi _k\big (\mathrm{S}\mathbb {U}(m)\big )\; \qquad \quad k\in \mathbb {N}\cup \{0\}. \end{aligned}$$
(A.1)

Equation (A.1), along with the computation of the homotopy groups \(\pi _{1}(\mathbb {S}^1)\simeq \mathbb {Z}\) and \(\pi _{k}(\mathbb {S}^1)=0\) for all \(k\ne 1\) [37, Proposition 4.1], provides the isomorphisms \(\pi _{k}(\mathrm{S}\mathbb {U}(m))\simeq \pi _{k}(\mathbb {U}(m))\) for all \(k\geqslant 2\) with the only difference \(\pi _{1}(\mathrm{S}\mathbb {U}(m))=0\) opposed to \(\pi _{1}(\mathbb {U}(m))\simeq \mathbb {Z}\). Table A.1 can be completed with \(\pi _{0}(\mathbb {U}(m))= 0=\pi _{0}(\mathrm{S}\mathbb {U}(m))\) which simply means that the groups \(\mathbb {U}(m)\) and \(\mathrm{S}\mathbb {U}(m)\) are path-connected.

The computation of the homotopy groups of the Grassmann manifold \(G_m(\mathbb {C}^\infty )\) can be reduced to the problem of the computation of the homotopy groups of \(\mathbb {U}(m)\) by means of the fiber sequence associated to the universal classifying principal \(\mathbb {U}(m)\)-bundle

$$\begin{aligned} \mathbb {U}(m)\;\longrightarrow \;\mathscr {S}_m^\infty \;\longrightarrow \;G_m(\mathbb {C}^\infty ) \end{aligned}$$
(A.2)

where \( \mathscr {S}_m^n:= \mathbb {U}(n)/ \mathbb {U}(n-m)\) is the Stiefel variety and \(\mathscr {S}_m^\infty :=\bigcup _{n=1}^{\infty }\;\mathscr {S}_m^n\) is, as usual, the inductive limit. The universality of the space \(\mathscr {S}_m^\infty \) implies its contractibility, i. e.  \(\pi _k(\mathscr {S}_m^\infty )=0\) for all k [38, Chapter 8, Theorem 5.1]. This fact applied to the homotopy exact sequence induced by (A.2) gives

$$\begin{aligned} \pi _k\big ( G_m(\mathbb {C}^\infty )\big )\;\simeq \;\pi _{k-1}\big (\mathbb {U}(m)\big )\;\qquad \quad \ k\in \mathbb {N}. \end{aligned}$$
(A.3)

The connectedness of the Grassmann manifold also implies \(\pi _0( G_m(\mathbb {C}^\infty ))=0\).

Cohomology. The cohomology ring of the Grassmann manifold

$$\begin{aligned} H^\bullet \big (G_m(\mathbb {C}^\infty ),\mathbb {Z}\big )\;\simeq \;\mathbb {Z}[\mathfrak {c}_1,\ldots ,\mathfrak {c}_m], \qquad \quad \mathfrak {c}_k\in H^{2k}\big (G_m(\mathbb {C}^\infty ),\mathbb {Z}\big ) \end{aligned}$$
(A.4)

is the ring of polynomials with integer coefficients and m generators \(\mathfrak {c}_k\) of even degree [57, Theorem 14.5]. These generators \(\mathfrak {c}_k\) are called universal Chern classes and there are no polynomial relationships between them. Since isomorphism classes of rank m complex vector bundles over X are classified by maps \([\varphi ]\in [X,G_m(\mathbb {C}^\infty )]\), one defines the (topological) Chern classes of a given vector bundle \(\mathscr {E}\rightarrow X\) by

$$\begin{aligned} {c}_k(\mathscr {E})\;:=\;\varphi ^*(\mathfrak {c}_k)\;\in \;H^{2k}(X,\mathbb {Z})\qquad \quad k\in \mathbb {N}\; \end{aligned}$$

where \(\varphi ^*:H^k(G_m(\mathbb {C}^\infty ),\mathbb {Z})\rightarrow H^k(X,\mathbb {Z})\) is the pullback induced by the classifying map \(\varphi \). Isomorphic vector bundles possess the same family of Chern classes.

Remark A.1

(Postnikov sections of the Grassmann manifold) The problem of the construction of the Postnikov tower for the spaces \(G_m(\mathbb {C}^\infty )\) has been firstly studied in [61]. With reference to the content of Sect. 5.4 let \(\alpha _j:G_m(\mathbb {C}^\infty )\rightarrow \mathscr {G}_{j}^m\) be the j-th Postnikov section of the Grassmann manifold \(G_m(\mathbb {C}^\infty )\). This section is obtained from the previous one \(\mathscr {G}_{j-1}^m\) according to the (principal) fibration sequences

$$\begin{aligned} K(\pi _{j},j)\;\longrightarrow \; \mathscr {G}_{j}^m\;{\mathop {\longrightarrow }\limits ^{p_{j}}}\; \mathscr {G}_{j-1}^m\;{\mathop {\longrightarrow }\limits ^{\kappa ^{j+1}}}\; K(\pi _{j},j+1) \end{aligned}$$
(A.5)

where \(\pi _{j}:=\pi _{j}(\mathscr {G}_{j}^m)\) and \(\kappa ^{j+1}\) define the related Postnikov invariant. Since \(\pi _{j}(\mathscr {G}_{j}^m)=0\) for j odd and \(j\leqslant 2m\) one has that \(\mathscr {G}_{2j-1}^m=\mathscr {G}_{2j-2}^m\) for \(j\leqslant m\). Thus, one has to compute \(\kappa ^{2j+1}\in H^{2j+1}(\mathscr {G}_{2j-1}^m,\pi _{2j})\) for \(j\leqslant m\). Now [61, Lemma 4.4] states that for \(j\leqslant m\) the invariant \(\kappa ^{2j+1}\) has order \((j-1)!\). With this information we can immediately conclude that \(\mathscr {G}_{1}^m\simeq \{*\}\) which implies \(\kappa ^3=0\) and so \(\mathscr {G}_{3}^m\simeq \mathscr {G}_{2}^m\simeq K(\mathbb {Z},2)\simeq \mathbb {C}P^\infty \) for all \(m\geqslant 1\). For the determination of the next section one needs \(\kappa ^5\in H^5(\mathbb {C}P^\infty , \pi _4)\simeq 0\) for \(m\geqslant 2\). In conclusion one has

$$\begin{aligned} \mathscr {G}_{4}^m\;\simeq \;K(\mathbb {Z},2)\;\times \; K(\mathbb {Z},4), \qquad \quad \forall \ m\geqslant 2. \end{aligned}$$
(A.6)

Lemma 4.1 in [61] assures that \(H^k(\mathscr {G}_{4}^m,\mathbb {Z})\simeq H^k(G_m(\mathbb {C}^\infty ),\mathbb {Z})\) for all \(k\leqslant 4\) and with the help of the Künneth formula for cohomology and the explicit knowledge of the cohomology groups of \(K(\mathbb {Z},2)\) and \(K(\mathbb {Z},4)\) one obtains that for all \(m\geqslant 2\)

$$\begin{aligned} \begin{aligned} H^0\big (G_m(\mathbb {C}^\infty ),\mathbb {Z}\big )\;&\simeq \;H^{0}\big ( K(\mathbb {Z},2) , \mathbb {Z}\big )\;\otimes _\mathbb {Z}\; H^{0}\big ( K(\mathbb {Z},4) , \mathbb {Z}\big )\; \simeq \;\mathbb {Z}\\ H^1\big (G_m(\mathbb {C}^\infty ),\mathbb {Z}\big )\;&\simeq \;0\\ H^2\big (G_m(\mathbb {C}^\infty ),\mathbb {Z}\big )\;&\simeq \;H^{2}\big ( K(\mathbb {Z},2) , \mathbb {Z}\big )\;\simeq \; \mathbb {Z}\\ H^3\big (G_m(\mathbb {C}^\infty ),\mathbb {Z}\big )\;&\simeq \;0\\ H^4\big (G_m(\mathbb {C}^\infty ),\mathbb {Z}\big )\;&\simeq \;H^{4}\big ( K(\mathbb {Z},2) , \mathbb {Z}\big )\;\oplus \; H^{4}\big ( K(\mathbb {Z},4) , \mathbb {Z}\big )\; \simeq \;\mathbb {Z}^2. \end{aligned} \end{aligned}$$

The above computations show that the first two universal Chern classes \(\mathfrak {c}_1\) and \(\mathfrak {c}_2\) can be identified with the basic class of \(H^{2}( K(\mathbb {Z},2) , \mathbb {Z})\) and \(H^{4}( K(\mathbb {Z},4) , \mathbb {Z})\), respectively (for a definition of basic class see e. g. [2, Definition 5.3.1]).\(\blacktriangleleft \).

Also the cohomology ring of the unitary group \(\mathbb {U}(m)\) is well-known. It is a classical result that

$$\begin{aligned} H^\bullet \big (\mathbb {U}(m),\mathbb {Z}\big )\;\simeq \;{\bigwedge }_\mathbb {Z}\;[\mathfrak {w}_1,\ldots ,\mathfrak {w}_{m}], \qquad \quad \mathfrak {w}_k\in H^{2k-1}\big (\mathbb {U}(m),\mathbb {Z}\big ) \end{aligned}$$
(A.7)

is the exterior algebra generated by m odd-degree classes \(\mathfrak {w}_k\) [10, Théorème 19.1] or [11, Section 10]. By adhering to a modern terminology (see e. g. [62, 63]) we will refer to the \(\mathfrak {w}_k\)’s as the universal odd Chern classes. The description (A.7) can be generalized to the infinite unitary group \(\mathbb {U}(\infty )\).

Lemma A.2

The cohomology ring of the infinite unitary group \(\mathbb {U}(\infty )\)

$$\begin{aligned} H^\bullet \big (\mathbb {U}(\infty ),\mathbb {Z}\big )\;\simeq \;{\bigwedge }_\mathbb {Z}\;[\mathfrak {w}_1,\mathfrak {w}_{2},\ldots ], \qquad \quad \mathfrak {w}_k\in H^{2k-1}\big (\mathbb {U}(\infty ),\mathbb {Z}\big ), \qquad k\in \mathbb {N}\end{aligned}$$
(A.8)

is the exterior algebra generated by a countable family of odd-degree classes \(\mathfrak {w}_k\).

Proof

The group \(\mathbb {U}(\infty )\) is by definition the limit of the direct system of inclusions

$$\begin{aligned} \mathbb {U}(1)\;{\mathop {\hookrightarrow }\limits ^{\imath _1}}\;\mathbb {U}(2)\; {\mathop {\hookrightarrow }\limits ^{\imath _2}}\;\mathbb {U}(3)\;{\mathop {\hookrightarrow }\limits ^{\imath _3}}\;\cdots \end{aligned}$$

which induces an inverse system in cohomology

$$\begin{aligned} H^\bullet \big (\mathbb {U}(1),\mathbb {Z}\big )\;{\mathop {\longleftarrow }\limits ^{\imath _1^*}}\;H^\bullet \big (\mathbb {U}(2),\mathbb {Z}\big )\;{\mathop {\longleftarrow }\limits ^{\imath _2^*}}\;H^\bullet \big (\mathbb {U}(3),\mathbb {Z}\big )\;{\mathop {\longleftarrow }\limits ^{\imath _3^*}}\;\cdots . \end{aligned}$$
(A.9)

The relation between the inverse system (A.9) and the cohomology \(H^\bullet \big (\mathbb {U}(\infty ),\mathbb {Z}\big )\) is specified by the Milnor exact sequence. Let us define a cochain complex \((\mathcal {C}^\bullet ,\delta )\) by

$$\begin{aligned} \mathcal {C}^k\;:=\; \left\{ \begin{aligned}&{\prod }_j\; H^\bullet \big (\mathbb {U}(j),\mathbb {Z}\big )&\qquad \quad&j=0,1\\&0&\qquad \quad&j\geqslant 2\\ \end{aligned} \right. \end{aligned}$$

where \(\prod \) is the direct product of abelian groups and the (only non-trivial) differential \(\delta :\mathcal {C}^0\rightarrow \mathcal {C}^1\) is defined by

$$\begin{aligned} \delta \big (\mathfrak {a}_1,\mathfrak {a}_2,\mathfrak {a}_3,\ldots \big )\;:=\;\big (\mathfrak {a}_1-\imath _1^*(\mathfrak {a}_2),\mathfrak {a}_2-\imath _2^*(\mathfrak {a}_3),\mathfrak {a}_3-\imath _3^*(\mathfrak {a}_4),\ldots \big ), \quad \mathfrak {a}_j\in H^\bullet \big (\mathbb {U}(j),\mathbb {Z}\big ). \end{aligned}$$

By definition the inverse limit (A.9) arises as the 0-th cohomology group of the cochain complex \((\mathcal {C}^\bullet ,\delta )\), i. e. 

$$\begin{aligned} \lim _{\leftarrow j}\ H^\bullet \big (\mathbb {U}(j),\mathbb {Z}\big )\;:=\; H^0\big (\mathcal {C}^\bullet ,\delta \big )\;=\;\mathrm{Ker}(\delta ). \end{aligned}$$

The cokernel of \(\delta \) is usually called “limit 1”:

$$\begin{aligned} {\lim _{\leftarrow j}}^1\ H^\bullet \big (\mathbb {U}(j),\mathbb {Z}\big )\;:=\; H^1\big (\mathcal {C}^\bullet ,\delta \big )\;=\;\mathcal {C}^1/\mathrm{Im}(\delta ). \end{aligned}$$

The Milnor exact sequence [56, Lemma 2] states that

$$\begin{aligned} 0\;\longrightarrow \;{\lim _{\leftarrow j}}^1\ H^\bullet \big (\mathbb {U}(j),\mathbb {Z}\big )\;\longrightarrow \;H^\bullet \big (\mathbb {U}(\infty ),\mathbb {Z}\big )\;\longrightarrow \;{\lim _{\leftarrow j}}\ H^\bullet \big (\mathbb {U}(j),\mathbb {Z}\big )\;\longrightarrow \;0. \end{aligned}$$
(A.10)

Notice that each \(\imath ^*_j: H^\bullet (\mathbb {U}(j+1),\mathbb {Z})\rightarrow H^\bullet (\mathbb {U}(j),\mathbb {Z})\) is surjective since \(\imath ^*_j(\mathfrak {w}_k)=\mathfrak {w}_k\) for all \(k=1,\ldots ,j\) and \(\imath ^*_j(\mathfrak {w}_{j+1})=0\). Then, a simple argument shows that also the differential \(\delta :\mathcal {C}^0\rightarrow \mathcal {C}^1\) is surjective and so the “limit 1” is trivial. This implies that \( H^\bullet \big (\mathbb {U}(\infty ),\mathbb {Z}\big )\simeq \mathrm{Ker}(\delta ) \) and the kernel \(\mathrm{Ker}(\delta )\) is generated by elements of the form \(\big (\mathfrak {w}_k,\mathfrak {w}_k,\mathfrak {w}_k,\ldots \big )\) which can be identified with the generators \(\mathfrak {w}_k\) for all \(k\in \mathbb {N}\). This concludes the proof. \(\square \)

Remark A.3

(Postnikov sections of the Palais unitary group) The Postnikov resolution of \(\mathbb {U}(\infty )\) can be used to provide a different description of the universal odd Chern classes \(\mathfrak {w}_k\), at least in low dimension. With reference to the technological apparatus described in Sect. 5.4 we want to compute the Postnikov sections \(\alpha _j:\mathbb {U}(\infty )\rightarrow \mathscr {U}_{j}^\infty \). From \(\pi _1(\mathbb {U}(\infty ))=\mathbb {Z}\) we immediately get \(\mathscr {U}_{1}^\infty =K(\mathbb {Z},1)\simeq \mathbb {S}^1\). Since we know that \(\pi _{2j}(\mathbb {U}(\infty ))=0\) and by using the fact that \(K(0,j)=\{*\}\) (along with [37, Corollary 4.63]) we obtain from (5.7) that \(\mathscr {U}_{2j}^\infty \simeq \mathscr {U}_{2j-1}^\infty \). Hence, we need to compute only the odd sections. For the computation of \(\mathscr {U}_{3}^\infty \) we need the knowledge of the Postnikov invariant \(\kappa ^4\) in the fiber sequence

$$\begin{aligned} K(\mathbb {Z},3)\;\longrightarrow \; \mathscr {U}_{3}^\infty \;{\mathop {\longrightarrow }\limits ^{p_{3}}}\; \mathscr {U}_{2}^\infty \simeq \mathscr {U}_{1}^\infty \;{\mathop {\longrightarrow }\limits ^{\kappa ^{4}}}\; K(\mathbb {Z},4). \end{aligned}$$
(A.11)

From its very definition we know that \(\kappa ^{4}\in H^{4}(\mathscr {U}^\infty _{2}, \mathbb {Z})\simeq H^{4}(\mathbb {S}^1, \mathbb {Z})=0\). The vanishing of \(\kappa ^{4}\) immediately yields

$$\begin{aligned} \mathscr {U}_{4}^\infty \;\simeq \; \mathscr {U}_{3}^\infty \;\simeq \;K(\mathbb {Z},1)\;\times \; K(\mathbb {Z},3). \end{aligned}$$
(A.12)

The next step requires the computation of the Postnikov invariant \(\kappa ^5\) in the fiber sequence

$$\begin{aligned} K(\mathbb {Z},5)\;\longrightarrow \; \mathscr {U}_{5}^\infty \;{\mathop {\longrightarrow }\limits ^{p_{5}}}\; \mathscr {U}_{4}^\infty \simeq \mathscr {U}_{3}^\infty \;{\mathop {\longrightarrow }\limits ^{\kappa ^{6}}}\; K(\mathbb {Z},6). \end{aligned}$$
(A.13)

In this case the Postnikov invariant is an element of \(\kappa ^{6}\in H^{6}(\mathscr {U}^\infty _{4}, \mathbb {Z})\simeq H^{6}(\mathbb {S}^1\times K(\mathbb {Z},3) , \mathbb {Z})\). The knowledge of the non trivial cohomology \(H^{k}(\mathbb {S}^1, \mathbb {Z})\simeq \mathbb {Z}\) if \(k=0,1\) and the use of the Künneth formula for cohomology provide

$$\begin{aligned} H^{6}\big (\mathscr {U}^\infty _{4}, \mathbb {Z}\big )&\simeq \;\Big (\mathbb {Z}\;\otimes _\mathbb {Z}\; H^{6}\big ( K(\mathbb {Z},3) , \mathbb {Z}\big )\Big )\;\oplus \;\Big (\mathbb {Z}\;\otimes _\mathbb {Z}\; H^{5}\big ( K(\mathbb {Z},3) , \mathbb {Z}\big )\Big )\\&\simeq \mathbb {Z}\;\otimes _\mathbb {Z}\;\mathbb {Z}_2\;\simeq \mathbb {Z}_2. \end{aligned}$$

where we used the explicit results \( H^{5}( K(\mathbb {Z},3) , \mathbb {Z})=0\) and \(H^{6}( K(\mathbb {Z},3) , \mathbb {Z})\simeq \mathbb {Z}_2\) computed in [14, Section 18]. This is compatible with the more general result [3, Lemma 5] which states that \(\kappa ^{6}\) is a (non-trivial) element of order 2. This implies that

$$\begin{aligned} \mathscr {U}_{6}^\infty \;\simeq \; \mathscr {U}_{5}^\infty \;\simeq \;\Big (K(\mathbb {Z},1)\;\times \; K(\mathbb {Z},3)\Big )\;\times _{\kappa ^6}\; K(\mathbb {Z},5). \end{aligned}$$
(A.14)

where the last product is “twisted” by the action of the non trivial class \(\kappa ^6\). Evidently the construction becomes more and more involved when the degree of the Postnikov section increases. Let us consider now the implication of (A.12) for the interpretation of the first two generators of \(\mathbb {U}(\infty )\). By construction the map \(\alpha _4:\mathbb {U}(\infty )\rightarrow \mathscr {U}_{4}^\infty \) is a 5-equivalence, hence the Whitehead’s second theoremFootnote 5 assures that \(H^k(\mathbb {U}(\infty ),\mathbb {Z})\simeq H^k(\mathscr {U}_{4}^\infty ,\mathbb {Z})\) for all \(k\leqslant 4\). With the help of the Künneth formula for cohomology and the explicit knowledge of cohomology of \(K(\mathbb {Z},1)\) and \(K(\mathbb {Z},3)\) one computes

$$\begin{aligned} \begin{aligned} H^0\big (\mathbb {U}(\infty ),\mathbb {Z}\big )\;&\simeq \;H^{0}\big ( K(\mathbb {Z},1) , \mathbb {Z}\big )\;\otimes _\mathbb {Z}\; H^{0}\big ( K(\mathbb {Z},3) , \mathbb {Z}\big )\; \simeq \;\mathbb {Z}\\ H^1\big (\mathbb {U}(\infty ),\mathbb {Z}\big )\;&\simeq \;H^{1}\big ( K(\mathbb {Z},1) , \mathbb {Z}\big )\;\otimes _\mathbb {Z}\; H^{0}\big ( K(\mathbb {Z},3) , \mathbb {Z}\big )\; \simeq \;H^{1}\big ( K(\mathbb {Z},1) , \mathbb {Z}\big )\;\simeq \;\mathbb {Z}\\ H^2\big (\mathbb {U}(\infty ),\mathbb {Z}\big )\;&\simeq \;0\\ H^3\big (\mathbb {U}(\infty ),\mathbb {Z}\big )\;&\simeq \;H^{0}\big ( K(\mathbb {Z},1) , \mathbb {Z}\big )\;\otimes _\mathbb {Z}\; H^{3}\big ( K(\mathbb {Z},3) , \mathbb {Z}\big )\;\simeq \;H^{3}\big ( K(\mathbb {Z},3) , \mathbb {Z}\big )\; \simeq \;\mathbb {Z}\\ H^4\big (\mathbb {U}(\infty ),\mathbb {Z}\big )\;&\simeq \;H^{1}\big ( K(\mathbb {Z},1) , \mathbb {Z}\big )\;\otimes _\mathbb {Z}\; H^{3}\big ( K(\mathbb {Z},3) , \mathbb {Z}\big )\; \simeq \;\mathbb {Z}. \end{aligned} \end{aligned}$$

The above result shows that \(\mathfrak {w}_1\) and \(\mathfrak {w}_2\) can be identified with the basic class of \(H^{1}( K(\mathbb {Z},1) , \mathbb {Z})\) and \(H^{3}( K(\mathbb {Z},3) , \mathbb {Z})\), respectively (for a definition of basic class see e. g. [2, Definition 5.3.1]). As a final comment we can observe that (A.12) also describes the 3-rd and 4-th Postnikov sections of \(\mathbb {U}(m)\) for all \(m\geqslant 2\) while (A.14) describes the 5-th and 6-th Postnikov sections of \(\mathbb {U}(m)\) for all \(m\geqslant 3\) (stable regime). \(\blacktriangleleft \)

Appendix B. Fiber bundle identification of the classifying space

The definition (3.2) says that the spaces \(\chi _m(\mathbb {C}^n)\) are subspaces of \(G_m(\mathbb {C}^n)\times \mathbb {U}(n)\). These spaces can be also identified with the total spaces of suitable fiber bundles. For this aim, let us recall a standard construction: For any Lie group \(\mathbb {G}\) and any principal \(\mathbb {G}\)-bundle \(\pi : \mathscr {P} \rightarrow X\) we use the adjoint action of \(\mathbb {G}\) on \(\mathbb {G}\) to get the associated fiber bundle

$$\begin{aligned} {\mathrm{Ad}}(\mathscr {P})\;:=\;\mathscr {P}\;\times _{\mathrm{Ad}}\;\mathbb {G}\;=\;(\mathscr {P}\;\times \;\mathbb {G})/\mathbb {G} \end{aligned}$$

where \(g\in \mathbb {G}\) acts on \((p,h)\in \mathscr {P}\times \mathbb {G}\) by \((p,h)\mapsto (p\cdot g^{-1},g\cdot h\cdot g^{-1})\). It is a well-known fact that sections of \({\mathrm{Ad}}(\mathscr {P})\rightarrow X\) are in one to one correspondence with automorphisms of \(\mathscr {P}\) [38, Chapter 7, Section 1].

Let us also recall that the Grassmann manifold and its tautological \(\mathbb {U}(m)\)-frame bundle (Stiefel variety) \(\mathscr {S}_m^n\rightarrow G_m(\mathbb {C}^n)\) can be realized as quotient spaces:

$$\begin{aligned} G_m(\mathbb {C}^n)\simeq \mathbb {U}(n)/\big (\mathbb {U}(m)\times \mathbb {U}(n-m)\big ), \qquad \quad \mathscr {S}_m^n\simeq \mathbb {U}(n)/ \mathbb {U}(n-m), \end{aligned}$$
(B.1)

where \(\mathbb {U}(m)\) and \(\mathbb {U}(n-m)\) act (on the right) on \(\mathbb {U}(n)\) through the inclusions of \(\mathbb {C}^m\) and \(\mathbb {C}^{m-n}\) into \(\mathbb {C}^n=\mathbb {C}^m\oplus \mathbb {C}^{n-m}\). Let \(\Sigma \in G_m(\mathbb {C}^n)\) be a subspace of \(\mathbb {C}^n\) of dimension m. Given orthonormal basis \(mathbb {v}:=(\mathrm{v}_1,\ldots ,\mathrm{v}_m)\) and \(mathbb {w}:=(\mathrm{w}_1,\ldots ,\mathrm{w}_{n-m})\) of \(\Sigma \subset \mathbb {C}^n\) and \(\Sigma ^\bot \subset \mathbb {C}^n\), respectively one can form an element \((mathbb {v},mathbb {w})\in \mathbb {U}(n)\) by arraying the vectors as columns, i. e. 

$$\begin{aligned} (mathbb {v},mathbb {w})\;:=\; \left( \begin{array}{cccccc} | &{} &{} | &{} | &{} &{} | \\ \mathrm{v}_1 &{} \cdots &{} \mathrm{v}_m &{} \mathrm{w}_1 &{} \cdots &{} \mathrm{w}_{n-m} \\ | &{} &{} | &{} | &{} &{} | \end{array}\right) . \end{aligned}$$
(B.2)

According to this notation \(mathbb {v}\) and \(mathbb {w}\) can be considered an \(n\times m\) and an \(n\times (m-n)\) matrices, respectively. The pair \((mathbb {v},mathbb {w})\) provides a representative for \(([mathbb {v}],[mathbb {w}])=\Sigma \in G_m(\mathbb {C}^n)\) according to the quotient description of the Grassmann manifold in (B.1). Here, the equivalence relations are naturally given by \(mathbb {v}\sim mathbb {v}\cdot a\) and \(mathbb {w}\sim mathbb {w}\cdot b\) for some \(a\in \mathbb {U}(m)\) and \(b\in \mathbb {U}(n-m)\). Similarly, we can use \((mathbb {v},[mathbb {w}])\in \mathscr {S}_m^n\) for a point in the Stiefel variety according to the quotient representation in (B.1) and an element \(c\in \mathbb {U}(m)\) in the structure group can be represented by a block diagonal matrix

$$\begin{aligned} \left( \begin{array}{c|c}c &{} 0 \\ \hline 0 &{} mathbb {1}_{n-m}\end{array}\right) \;\subset \;\mathbb {U}(n). \end{aligned}$$

In this way points in \({\mathrm{Ad}}\big (\mathscr {S}_m^n\big )\) are given by equivalence classes \([(mathbb {v},mathbb {w}),c]\) with respect to the equivalence relation \(((mathbb {v},mathbb {w}\cdot b),c)\sim ((mathbb {v}\cdot a^{-1},mathbb {w}),a\cdot c\cdot a^{-1})\) for some \(a\in \mathbb {U}(m)\) and \(b\in \mathbb {U}(n-m)\).

The core of this appendix is the proof of the following identifications:

Proposition B.1

There are natural homeomorphisms

$$\begin{aligned} \chi _m(\mathbb {C}^n)\;\simeq \; {\mathrm{Ad}}\big (\mathscr {S}_m^n\big ), \qquad \text {and}\qquad \mathbb {B}_\chi ^m\;\simeq \; {\mathrm{Ad}}\big (\mathscr {S}_m^\infty \big ), \end{aligned}$$

where, as usual, \(\mathscr {S}_m^\infty \) denotes the inductive limit obtained by the inclusions \(\mathscr {S}_m^n\subset \mathscr {S}_m^{n+1}\subset \cdots \ \).

However, we start first with a technical preliminary result.

Lemma B.2

For each pair of integers \(1\leqslant m\leqslant n\) there is a bijective continuous map

$$\begin{aligned} \vartheta \;:\;{\mathrm{Ad}}\big (\mathscr {S}_m^n\big )\;\longrightarrow \; \chi _m(\mathbb {C}^n). \end{aligned}$$
(B.3)

Proof

Given an element \((mathbb {v},mathbb {w})\in \mathbb {U}(n)\) as in (B.2) and a \(c\in \mathbb {U}(m)\) there is a unique unitary matrix \(u(mathbb {v};mathbb {w};c)\in \mathbb {U}(n)\) such that \( u(mathbb {v};mathbb {w};c)\cdot (mathbb {v},mathbb {w})=(mathbb {v}\cdot c,mathbb {w}) \). Such a matrix is explicitly given by

$$\begin{aligned} u(mathbb {v};mathbb {w};c)\;:=\;(mathbb {v},mathbb {w})\cdot \left( \begin{array}{c|c}c &{} 0 \\ \hline 0 &{} mathbb {1}_{n-m}\end{array}\right) \cdot (mathbb {v},mathbb {w})^{-1}. \end{aligned}$$

By construction \(u(mathbb {v};mathbb {w};c)\) preserves the m-dimensional subspace \(([mathbb {v}],[mathbb {w}])=\Sigma \subset \mathbb {C}^n\) spanned by the columns of \(mathbb {v}\). Therefore, the pair \((\Sigma ,u):=(([mathbb {v}],[mathbb {w}]),u(mathbb {v};mathbb {w};c))\) provides a point in \(\chi _m(\mathbb {C}^n)\). This allows to define the map

$$\begin{aligned} \begin{aligned} \vartheta \;:\;&\;\mathscr {S}_m^n\times \mathbb {U}(m)&\;\longrightarrow \;&\ \ \chi _m(\mathbb {C}^n)&\\&\;\big ((mathbb {v},[mathbb {w}]),c\big )&\;\longmapsto \;&\ \ (\Sigma ,u)&. \end{aligned} \end{aligned}$$
(B.4)

This map factors through the equivalence relation that defines \({\mathrm{Ad}}\big (\mathscr {S}_m^n\big )\) since \(([mathbb {v}],[mathbb {w}])=([mathbb {v}\cdot a],[mathbb {w}])=\Sigma \) and

$$\begin{aligned} u\big (mathbb {v}\cdot a;mathbb {w}; a \cdot c\cdot a^{-1}\big )\;=\;u\big (mathbb {v};mathbb {w};c\big )\;=\;u\big (mathbb {v};mathbb {w}\cdot b;c\big ), \qquad \quad \forall \ a\in \mathbb {U}(m),\ \ b\in \mathbb {U}(n-m) \end{aligned}$$

Hence, the prescription (B.4) defines a map like (B.3). The map \(\vartheta \) is also continuous. Indeed, the topology of \({\mathrm{Ad}}\big (\mathscr {S}_m^n\big )\) is induced from \(\mathbb {U}(n)\times \mathbb {U}(m)\) by a quotient, and that of \(\chi _m(\mathbb {C}^n)\) is induced from \(G_m(\mathbb {C}^n)\times \mathbb {U}(n)\) by an inclusion. Thus, to prove that \(\vartheta \) is continuous, it suffices to prove that the composition of the following maps is continuous:

(B.5)

The natural projection \({\mathrm{pr}}\) and the inclusion \(\imath \) are continuous by construction. Moreover, the composition of the three maps is easily computed to be \(((mathbb {v},mathbb {w}),c)\mapsto (([mathbb {v}],[mathbb {w}]),u(mathbb {v};mathbb {w};c))\) which is evidently continuous. This, in turn, implies the continuity of \(\vartheta \).

In order to prove that \(\vartheta \) is bijective we construct its inverse \(\varrho \). Let us start with a point \((\Sigma ,u)\in \chi _m(\mathbb {C}^n)\) and choose orthonormal basis \(mathbb {v}\) and \(mathbb {w}\) such that \(([mathbb {v}],[mathbb {w}])=\Sigma \) as above. Since \(u\in \mathbb {U}(n)\) preserves \(\Sigma \) there is a unique \(c(mathbb {v};u)\in \mathbb {U}(m)\) such that \(u\cdot mathbb {v}=mathbb {v}\cdot c(mathbb {v};u)\). Such a matrix is explicitly given by

$$\begin{aligned} c(mathbb {v};u)\;:=\;^t\overline{mathbb {v}} \cdot u\cdot mathbb {v} \end{aligned}$$

where \(^t\overline{mathbb {v}}\) denotes the transpose of the matrix \(\overline{mathbb {v}}\), complex conjugated of \(mathbb {v}\). Now we define

$$\begin{aligned} \begin{aligned} \varrho \;:\;&\;\chi _m(\mathbb {C}^n)&\;\longrightarrow \;&\ \ \ \ \ \ \ \ \ {\mathrm{Ad}}\big (\mathscr {S}_m^n\big )&\\&\;(\Sigma ,u)&\;\longmapsto \;&\ \ \big ((mathbb {v},[mathbb {w}]),c(mathbb {v};u)\big )&, \end{aligned} \end{aligned}$$
(B.6)

where \((mathbb {v},[mathbb {w}])\in \mathbb {U}(n)/ \mathbb {U}(n-m)\) identifies an element of \(\mathscr {S}_m^n\). The map \(\varrho \) does not depend on the choice of a frame \(mathbb {w}\) for \(\Sigma ^\bot \) (as denoted by the square brackets). Moreover, if \(mathbb {v}'=mathbb {v}\cdot a\) with \(a\in \mathbb {U}(m)\) is a new frame for \(\Sigma \), a direct computation shows \(c(mathbb {v}';u)=a^{-1}\cdot c(mathbb {v};u)\cdot a\). These two facts prove that \(\varrho \) really maps into \({\mathrm{Ad}}\big (\mathscr {S}_m^n\big )\). The proof that \(\varrho =\vartheta ^{-1}\) follows now from a direct, as well trivial, verification. \(\square \)

Proof of Proposition B.1

Lemma B.2 proves the existence of a continuous bijection \(\vartheta :{\mathrm{Ad}}\big (\mathscr {S}_m^n\big )\rightarrow \chi _m(\mathbb {C}^n)\). Since \({\mathrm{Ad}}\big (\mathscr {S}_m^n\big )\) is compact (it is the quotient of a compact group) and \(\chi _m(\mathbb {C}^n)\) is Hausdorff (it is the subspace of a Hausdorff space), \(\vartheta \) turns out to be a homeomorphism (see e. g. [40, Chapter I, Section 8]). This homeomorphism is compatible with taking the direct limits, so that it induces a homeomorphism \(\vartheta :{\mathrm{Ad}}\big (\mathscr {S}_m^\infty \big )\rightarrow \mathbb {B}_\chi ^m\). \(\square \)

From the construction of the identifications in Proposition B.1 it follows that the mapping \(\chi _m(\mathbb {C}^n)\rightarrow G_m(\mathbb {C}^n)\) in (3.4) and \(\mathbb {B}_\chi ^m\rightarrow G_m(\mathbb {C}^\infty )\) in (3.7) agree with the bundle maps \({\mathrm{Ad}}\big (\mathscr {S}_m^n\big )\rightarrow G_m(\mathbb {C}^n)\) and \({\mathrm{Ad}}\big (\mathscr {S}_m^\infty \big )\rightarrow G_m(\mathbb {C}^\infty )\), respectively. Summarizing, one has the fiber sequence

$$\begin{aligned} \mathbb {U}(m)\;\longrightarrow \;{{\mathrm{Ad}}}\big (\mathscr {S}_m^\infty \big )\simeq \mathbb {B}_\chi ^m\;{\mathop {\longrightarrow }\limits ^{\pi }}\; G_m\big (\mathbb {C}^\infty \big ) \end{aligned}$$
(B.7)

with projection \(\pi \) given by (3.7).

When \(m=1\), just by exploiting the fact that \(\mathbb {U}(1)\) is abelian, one gets the following immediate consequence of Proposition B.1.

Corollary B.3

$$\begin{aligned} \mathbb {B}_\chi ^1\;\simeq \;{\mathrm{Ad}}\big (\mathscr {S}_1^\infty \big )\;\simeq \;\mathbb {C}P^\infty \;\times \;\mathbb {U}(1). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Nittis, G., Gomi, K. Chiral vector bundles. Math. Z. 290, 775–830 (2018). https://doi.org/10.1007/s00209-018-2041-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-018-2041-1

Keywords

Mathematics Subject Classification

Navigation