Skip to main content
Log in

Contraction algebra and singularity of three-dimensional flopping contraction

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Donovan and Wemyss (Duke Math J 165(8):1397–1474, 2016) introduced the contraction algebra of flopping curves in threefold. They conjectured that the contraction algebra determines the formal neighborhood of the underlying singularity of the contraction. In this paper, we prove that the contraction algebra together with its natural \(A_\infty \)-structure constructed in Hua and Toda (Int Math Res Not rnw333, 2017), determine the formal neighborhood of the singularity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here we use the standard grading on Hochschild cochain which differs with the grading of Efimov by 1. Efimov used the pro-nilpotent version of \({\mathfrak {g}}\) and \({\mathfrak {h}}\) because he needed to define a gauge group action on the MC locus.

References

  1. Buchweitz, R.-O.: Hochschild cohomology of Koszul algebras. In: Talk at the Conference on Representation Theory, Canberra, July 2003

  2. Benson, M., Yau, S.S.-T.: Equivalences between isolated hypersurface singularities. Math. Ann. 287(1), 107–134 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Clemens, C.H., Kollr, J., Mori, S.: Higher dimensional complex geometry: a summer seminar at the University of Utah, Salt Lake City, 1987. Société mathématique de France (1988)

  4. Dyckerhoff, T.: Compact generators in categories of matrix factorizations. Duke Math. J. 159(2), 223–274 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Donovan, W., Wemyss, M.: Noncommutative deformations and flops. Duke Math. J. 165(8), 1397–1474 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Donovan, W., Wemyss, M.: Contractions and deformations (2015). arXiv preprint. arXiv:1511.00406

  7. Efimov, A.I.: Homological mirror symmetry for curves of higher genus. Adv. Math. 230(2), 493–530 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gerstenhaber, M.: The cohomology structure of an associative ring. Ann. Math. 78, 267–288 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  9. Greuel, G.-M., Lossen, C., Shustin, E.: Introduction to Singularities and Deformations. Springer, Berlin (2006)

    MATH  Google Scholar 

  10. Hua, Z., Toda, Y.: Contraction algebra and invariants of singularities. Int. Math. Res. Not. 2017, rnw333 (2017). https://doi.org/10.1093/imrn/rnw333

  11. Happel, D.: Hochschild cohomology of finite dimensional algebras. In: Malliavin, M-P. (ed.) Sminaire dAlgebre Paul Dubreil et Marie-Paul Malliavin, pp. 108–126. Springer, Berlin (1989)

  12. Iyama, O., Wemyss, M.: Maximal modifications and Auslander–Reiten duality for non-isolated singularities. Invent. Math. 197(3), 521–586 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Katz, S.: Genus zero Gopakumar–Vafa invariants of contractible curves. J. Differ. Geom. 79(2), 185–195 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Keller, B.: Introduction to \(A_\infty \) algebras and modules. Homol. Homotopy Appl. 3(1), 135 (2001)

    Google Scholar 

  15. Keller, B.: Derived invariance of higher structures on the Hochschild complex (2003) (preprint)

  16. Keller, B.: On differential graded categories. In: International Congress of Mathematicians, vol. 2, pp. 151–190. European Mathematical Society, Zürich (2006)

  17. Mescher, S.: A primer on A-infinity-algebras and their Hochschild homology (2016). arXiv preprint. arXiv:1601.03963

  18. Orlov, D.: Triangulated categories of singularities and D-branes in Landau-Ginzburg models. Trudy Matematicheskogo Instituta imeni VA Steklova 246, 240–262 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Polishchuk, A., Positselski, L.: Hochschild (co)homology of the second kind I. Trans. Am. Math. Soc. 364(10), 5311–5368 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Reid, M.: Minimal models of canonical 3-folds. In: Algebraic Varieties and Analytic Varieties, pp. 131–180 (1983)

  21. Van den Bergh, M.: Three-dimensional flops and noncommutative rings. Duke Math. J. 122(3), 423–455 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to Will Donovan and Michael Wemyss for many valuable discussions. The research was supported by RGC Early Career Grant no. 27300214 and NSFC Science Fund for Young Scholars no. 11401501.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Hua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, Z. Contraction algebra and singularity of three-dimensional flopping contraction. Math. Z. 290, 431–443 (2018). https://doi.org/10.1007/s00209-017-2024-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-017-2024-7

Keywords

Navigation