Skip to main content
Log in

Twisted cubics on singular cubic fourfolds—On Starr’s fibration

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We show that the Hilbert scheme compactification of the total space of Starr’s fibration on the space of twisted cubics on a cubic hypersurface in \({\mathbb P}^5\) not containing a plane admits a contraction to a singular projective symplectic variety of dimension eight which has a crepant resolution deformation equivalent to the symplectic eightfold constructed from twisted cubics on a smooth cubic fourfold. This yields another proof that the symplectic eightfold and the Hilbert scheme of four points on a K3 surface are deformation equivalent. As a byproduct we obtain similar results for the variety of lines on a singular cubic fourfold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The rational map \(\mathrm{Hilb}^2(S) \dashrightarrow M_1\) is a morphism as soon as Y does not contain a plane.

  2. In Addington’s paper the divisor \({\mathcal C}_6\) of singular cubics is not considered.

  3. Let us denote by \({\widetilde{Y}}\) a desingularization of Y which is rationally connected by the analysis of singularities from [15, Proposition 5.8]. Note that a desingularization of D is dominated by a blowup of \({{\text {Gr}}}(\Omega _{\widetilde{Y}},3)\) which is clearly rationally connected.

References

  1. Addington, N.: On two rationality conjectures for cubic fourfolds. Math. Res. Lett. 23(1), 1–13 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Addington, N., Lehn, M.: On the symplectic eightfold associated to a Pfaffian cubic fourfold. J. Reine Angew. Math. 731, 129–137 (2017)

  3. Beauville, A.: Symplectic singularities. Invent. math. 139, 541–549 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Birkar, C., Cascini, P., Hacon, C.D., McKernan, J.: Existence of minimal models for varieties of log general type. J. Am. Math. Soc 23(2), 405–468 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beauville, A., Donagi, R.: La variété des droites d’une hypersurface cubique de dimension 4. C. R. Acad. Sci. Paris 301, 703–706 (1985)

    MathSciNet  MATH  Google Scholar 

  6. Starr, J., de Jong, A.J.: Cubic fourfolds and spaces of rational curves. Ill. J. Math. 48(2), 415–450 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Debarre, O., Manivel, L.: Sur la variété des espaces linéaires contenus dans une intersection complète. Math. Ann. 312, 549–574 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Elkik, R.: Rationalité des singularités canoniques. Invent. Math. 64(1), 1–6 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. Huybrechts, D.: The Kähler cone of a compact hyperkähler manifold. Math. Ann. 326, 499–513 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kollár, J., Mori, S.: Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics, vol. 134. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  11. Lehn, C., Lehn, M., Sorger, C., van Straten, D.: Twisted cubics on a cubic fourfould. J. Reine Angew. Math. 731, 87–128 (2017)

  12. Mukai, S.: Symplectic structure of the moduli space of sheaves on an abelian or K3 surface. Invent. Math. 77(1), 101–116 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  13. Namikawa, Y.: Extension of 2-forms and symplectic varieties. J. Reine Angew. Math. 539, 123–147 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Namikawa, Y.: On deformations of \({\mathbb{Q}}\)-factorial symplectic varieties. J. Reine Angew. Math. 599, 97–110 (2006)

    MathSciNet  MATH  Google Scholar 

  15. O’Grady, K.G.: Irreducible symplectic \(4\)-folds numerically equivalent to \((K3)^{[2]}\). Commun. Contemp. Math. 10(4), 553–608 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Voisin, C.: On the universal \(CH_0\) group of cubic hypersurfaces. J. Eur. Math. Soc. (JEMS) 19(6), 1619–1653 (2017)

  17. Voisin, C.: Hodge Theory and Complex Algebraic Geometry. II. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  18. Wall, C.T.C.: Sextic curves and quartic surfaces with higher singularities. https://www.liv.ac.uk/~ctcw/hsscqs.ps (1999) (preprint)

Download references

Acknowledgements

It is a great pleasure to thank Jason Starr for explaining me his construction of the Lagrangian fibration, for his generosity in sharing insights, for helpful discussions and for pointing out several questions. Furthermore, I greatly benefited from discussions with Radu Laza and Claire Voisin. The author gratefully acknowledges the support by the DFG through the DFG research Grants Le 3093/1-1, Le 3093/2-1, and Le 3093/3-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Lehn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lehn, C. Twisted cubics on singular cubic fourfolds—On Starr’s fibration. Math. Z. 290, 379–388 (2018). https://doi.org/10.1007/s00209-017-2021-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-017-2021-x

Keywords

Navigation