Skip to main content
Log in

Riemann–Hurwitz formula for finite morphisms of p-adic curves

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Given a finite morphism \(\varphi :Y\rightarrow X\) of quasi-smooth Berkovich curves over a complete, non-archimedean, nontrivially valued algebraically closed field k of characteristic 0, we prove a Riemann–Hurwitz formula relating their Euler–Poincaré characteristics (calculated using De Rham cohomology of their overconvergent structure sheaf). The main tools are p-adic Runge’s theorem together with valuation polygons of analytic functions. Using the results obtained, we provide another point of view on Riemann–Hurwitz formula for finite morphisms of curves over algebraically closed fields of positive characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Classical ramification, i.e. the ramification with support in rational points; classically ramified points are also called critical points, as in [16].

  2. Since \(\frac{dS}{dT}\) is invertible, we can put it in the form \(\frac{dS}{dT}=\epsilon T^{\sigma }(1+h(T))\), where for each \(\rho \in (r,1)\), \(|h(T)|_{\eta _{0,\rho }}<1\). Following the terminology of [29, Lemma 1.6] we say that \(\sigma \) is the order of \(\frac{dS}{dT}\).

References

  1. Amini, O., Baker, M., Brugallé, E., Rabinoff, J.: Lifting harmonic morphisms I: metrized complexes and Berkovich skeleta. Res. Math. Sci. 2(1), 1–67 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baldassarri, F.: Continuity of the radius of convergence of differential equations on \(p\)-adic analytic curves. Inventiones Mathematicae 182(3), 513–584 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baldassarri, F., Kedlaya, K.: Harmonic functions attached to meromorphic connections on non-Archimedean curves. In preparation (2015)

  4. Berkovich, V.G.: Spectral Theory and Analytic Geometry Over Non-Archimedean Fields, Volume 33 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (1990)

  5. Berkovich, V.G.: Étale cohomology for non-archimedean analytic spaces. Publications Mathématiques de l’IHÉS 78(1), 5–161 (1993)

    Article  MATH  Google Scholar 

  6. Bojković, V.: On some applications of \(p\)-adic index theorem. In preparation

  7. Bosch, S.: A rigid analytic version of M. Artin’s theorem on analytic equations. Math. Ann. 255(3), 395–404 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bosch, S., Lütkebohmert, W.: Stable reduction and uniformization of abelian varieties I. Math. Ann. 270(3), 349–379 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cohen, A., Temkin, M., Trushin, D.: Morphisms of Berkovich curves and the different function. Adv. Math. 303, 800–858 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Coleman, R.F.: Torsion points on curves and \(p\)-adic abelian integrals. Ann. Math. (2) 121(1), 111–168 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Coleman, R.F.: Reciprocity laws on curves. Compositio Mathematica 72(2), 205–235 (1989)

    MathSciNet  MATH  Google Scholar 

  12. Coleman, R.F.: Stable maps of curves. Documenta Mathematica Extra Vol. Kato:217–225 (2003)

  13. Coleman, R.F., De Shalit, E.: \(p\)-Adic regulators on curves and special values of \(p\)-adic L-functions. Inventiones Mathematicae 93(2), 239–266 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. De Jong, A.J.: Étale fundamental groups of non-Archimedean analytic spaces. Compositio Mathematica 97(1–2), 89–118 (1995)

    MathSciNet  MATH  Google Scholar 

  15. Ducros, A.: La structure des courbes analytiques. Manuscript (2014). http://www.math.jussieu.fr/ducros

  16. Faber, X.: Topology and geometry of the Berkovich ramification locus for rational functions. I. Manuscripta Mathematica 142(3–4), 439–474 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fresnel, J., Matignon, M.: Sur les espaces analytiques quasi-compacts de dimension 1 sur un corps valué complet ultramétrique. Annali di Matematica 145(1), 159–210 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Garuti, M.A.: Prolongement de revêtements galoisiens en géométrie rigide. Compositio Mathematica 104(3), 305–331 (1996)

    MathSciNet  MATH  Google Scholar 

  19. Gerritzen, L., Van der Put, M.: Schottky Groups and Mumford Curves, Volume 817 of Lecture Notes in Mathematics. Springer, Berlin (1980)

    Book  Google Scholar 

  20. Große-Klönne, E.: Rigid analytic spaces with overconvergent structure sheaf. Journal für die Reine und Angewandte Mathematik 519, 73–95 (2000)

    MathSciNet  MATH  Google Scholar 

  21. Große-Klönne, E.: De Rham cohomology of rigid spaces. Math. Z. 247(2), 223–240 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Große-Klönne, E.: Remark on the Čech cohomology of a coherent sheaf on dagger spaces. A letter to Francesco Baldassarri (2013)

  23. Hartshorne, R.: Algebraic Geometry, Volume 52 of Graduate Texts in Mathematics. Springer Science and Business Media, Berlin (1977)

  24. Huber, R.: Swan representations associated with rigid analytic curves. Journal für die Reine und Angewandte Mathematik 537, 165–234 (2001)

  25. Kato, K.: Vanishing cycles, ramification of valuations, and class field theory. Duke Math. J. 55(3), 629–659 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kiehl, R.: Theorem A und Theorem B in der nichtarchimedischen Funktionentheorie. Inventiones Mathematicae 2(4), 256–273 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, Q.: Ouverts analytiques d’une courbe algébrique en géométrie rigide. Annales de l’Institut Fourier 37(3), 39–64 (1987)

    Article  MATH  Google Scholar 

  28. Liu, Q.: Algebraic Geometry and Arithmetic Curves, Volume 6 of Oxford Graduate Texts in Mathematics. Oxford University Press, Oxford (2002)

    Google Scholar 

  29. Lütkebohmert, W.: Riemann’s existence problem for a \(p\)-adic field. Inventiones Mathematicae 111(1), 309–330 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Poineau, J., Pulita, A.: The convergence Newton polygon of a \( p \)-adic differential equation IV: local and global index theorems. arXiv preprint arXiv:1309.3940 (2013)

  31. Raynaud, M.: Revêtements de la droite affine en caractéristique \(p>0\) et conjecture d’Abhyankar. Inventiones Mathematicae 116(1), 425–462 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  32. Van Der Put, M.: The class group of a one-dimensional affinoid space. Annales de l’Institut Fourier 30(4), 155–164 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  33. Van der Put, M.: De Rham cohomology of affinoid spaces. Compositio Mathematica 73(2), 223–239 (1990)

    MathSciNet  MATH  Google Scholar 

  34. Welliaveetil, J.: A Riemann–Hurwitz formula for skeleta in non-Archimedean geometry. arXiv preprint arXiv:1303.0164 (2013)

Download references

Acknowledgements

I would like to thank to my supervisor Francesco Baldassarri for proposing the problem of RH formula for finite morphisms of affinoid curves to me, and for his support during my work on this problem. I would also like to thank to my supervisor Denis Benois for his help during my stay in Bordeaux where the part of this work was done. I extend my thanks to Antoine Ducros, Marco Garuti, Elmar Große-Klönne, Jérôme Poineau and Michael Temkin for answering my many questions and especially to Jérôme and Antoine for their many suggestions on how to improve the present article. Finally I thank to the referee for many useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Velibor Bojković.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bojković, V. Riemann–Hurwitz formula for finite morphisms of p-adic curves. Math. Z. 288, 1165–1193 (2018). https://doi.org/10.1007/s00209-017-1931-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-017-1931-y

Keywords

Navigation