Skip to main content
Log in

The dualizing complex of F-injective and Du Bois singularities

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let \((R,\mathfrak {m}, k)\) be an excellent local ring of equal characteristic. Let j be a positive integer such that \(H_\mathfrak {m}^i(R)\) has finite length for every \(0\le i <j\). We prove that if R is F-injective in characteristic \(p>0\) or Du Bois in characteristic 0, then the truncated dualizing complex is quasi-isomorphic to a complex of k-vector spaces. As a consequence, F-injective or Du Bois singularities with isolated non-Cohen–Macaulay locus are Buchsbaum. Moreover, when R has F-rational or rational singularities on the punctured spectrum, we obtain stronger results generalizing Ishida (The dualizing complexes of normal isolated Du Bois singularities. Algebraic and topological theories, 387–390, 1984) and Ma (Math Ann 362:25–42, 2015).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Or dually, that has finite length for \(0 \le i < j\) (provided a dualizing complex exists). Under mild conditions this is equivalent to saying that the non-Cohen–Macaulay locus on \(\mathrm {Spec}(R)\) has codimension j.

  2. Equivalently, \(\tau ^{< d,*} \mathbf{R}\Gamma _\mathfrak {m}(R)[1] \in D(R)\) is the cone of the canonical composite map \(\mathbf{R}\Gamma _\mathfrak {m}(R) \rightarrow H^d_\mathfrak {m}(R)[-d] \rightarrow (H^d_\mathfrak {m}(R)/0^*_{H^d_\mathfrak {m}(R)})[-d]\).

References

  1. Ambro, F.: Quasi-log varieties. Tr. Mat. Inst. Steklova 240 (2003), no. Biratsion. Geom. Linein. Sist. Konechno Porozhdennye Algebry, 220–239. 1993751 (2004f:14027)

  2. Bhatt, B., Scholze, P.: Projectivity of the Witt vector affine Grassmannian. Invent. Math. 209(2), 329–423 (2017)

  3. Blickle, M., Schwede, K., Tucker, K.: \({F}\)-singularities via alterations. Am. J. Math. 137(1), 61–109 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bravo, A.M., Encinas, S., Villamayor, O.: A simplified proof of desingularization and applications. Rev. Mat. Iberoamericana 21(2), 349–458 (2005). (MR2174912)

    Article  MathSciNet  MATH  Google Scholar 

  5. Du Bois, P.: Complexe de de Rham filtré d’une variété singulière. Bull. Soc. Math. France 109(1), 41–81 (1981). [MR613848 (82j:14006)]

    Article  MathSciNet  MATH  Google Scholar 

  6. Enescu, F., Hochster, M.: The Frobenius structure of local cohomology. Algebra Number Theory 2(7), 721–754 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fedder, R.: \(F\)-purity and rational singularity. Trans. Am. Math. Soc. 278(2), 461–480 (1983)

    MathSciNet  MATH  Google Scholar 

  8. Fujino, O.: Fundamental theorems for semi log canonical pairs. Algebra Geom. 1(2), 194–228 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gabber, O.: Notes on some t-structures. Geometric aspects of Dwork theory, vol. I, II, pp. 711–734. Walter de Gruyter GmbH & Co. KG, Berlin (2004)

  10. Hanes, D.: Special conditions on maximal Cohen–Macaulay modules, and applications to the theory of multiplicities. Thesis, University of Michigan (1999)

  11. Hartshorne, R.: Residues and duality. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne. Lecture Notes in Mathematics, No. 20, Springer, Berlin (1966)

  12. Hochster, M., Huneke, C.: Tight closure, invariant theory, and the Briançon–Skoda theorem. J. Am. Math. Soc. 3(1), 31–116 (1990)

    MATH  Google Scholar 

  13. Ishida, M.-N.: The dualizing complexes of normal isolated du Bois singularities. In: Algebraic and topological theories (Kinosaki, 1984), pp. 387–390. Kinokuniya, Tokyo (1986)

  14. Kollár, J.: Higher direct images of dualizing sheaves I. Ann. Math. (2) 123(1), 11–42 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kollár, J., Kovács, S.J.: Log canonical singularities are Du Bois. J. Am. Math. Soc. 23(3), 791–813 (2010). (2629988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kovács, S.J., Schwede, K.E.: Hodge theory meets the minimal model program: a survey of log canonical and Du Bois singularities, Topology of stratified spaces. In: Math. Sci. Res. Inst. Publ., vol. 58, pp. 51–94. Cambridge University Press, Cambridge (2011)

  17. Kunz, E.: On Noetherian rings of characteristic \(p\). Am. J. Math. 98(4), 999–1013 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ma, L.: \({F}\)-injectivity and Buchsbaum singularities. Math. Ann. 362(1–2), 25–42 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Quy, P.H., Shimomoto, K.: \(F\)-injectivity and Frobenius closure of ideals in Noetherian rings of characteristic \(p\,>\,0\). Adv. Math. 313, 127–166 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schenzel, P.: Applications of dualizing complexes to Buchsbaum rings. Adv. Math. 44(1), 61–77 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schewde, K., Zhang, W.: Bertini theorems for \(F\)-singularities. Proc. Lond. Math. Soc. (3) 107(4), 851–874 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Smith, K.E.: Tight closure of parameter ideals. Invent. Math. 115(1), 41–60 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Smith, K.E.: \(F\)-rational rings have rational singularities. Am. J. Math. 119(1), 159–180 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Stückrad, J., Vogel, W.: Buchsbaum rings and applications. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  25. T. Stacks Project Authors: The Stacks Project. http://stacks.math.columbia.edu

Download references

Acknowledgements

We would like to thank Shunsuke Takagi for several useful discussions and for bringing these questions to our attention. We would also like to thank Sándor Kovács, Zsolt Patakfalvi and Sean Sather-Wagstaff for useful discussions. Finally we thank Lance Miller, Kazuma Shimomoto and the referees for comments on previous drafts of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Schwede.

Additional information

Bhargav Bhatt, was supported by NSF Grants DMS #1501461 and DMS #1522828 and by a Packard Fellowship. Linquan Ma, was supported by NSF Grant DMS #1600198, NSF CAREER Grant DMS #1252860/1501102 and a Simons Travel Grant. Karl Schwede was supported by the NSF FRG Grant DMS #1265261/1501115, NSF CAREER Grant DMS #1252860/1501102 and a Sloan Fellowship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatt, B., Ma, L. & Schwede, K. The dualizing complex of F-injective and Du Bois singularities. Math. Z. 288, 1143–1155 (2018). https://doi.org/10.1007/s00209-017-1929-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-017-1929-5

Keywords

Mathematics Subject Classification

Navigation