Skip to main content
Log in

A general approach to Heisenberg categorification via wreath product algebras

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We associate a monoidal category \({\mathcal {H}}_B\), defined in terms of planar diagrams, to any graded Frobenius superalgebra B. This category acts naturally on modules over the wreath product algebras associated to B. To B we also associate a (quantum) lattice Heisenberg algebra \({\mathfrak {h}}_B\). We show that, provided B is not concentrated in degree zero, the Grothendieck group of \({\mathcal {H}}_B\) is isomorphic, as an algebra, to \({\mathfrak {h}}_B\). For specific choices of Frobenius algebra B, we recover existing results, including those of Khovanov and Cautis–Licata. We also prove that certain morphism spaces in the category \({\mathcal {H}}_B\) contain generalizations of the degenerate affine Hecke algebra. Specializing B, this proves an open conjecture of Cautis–Licata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. After this was brought to their attention, the authors of [10] corrected this omission in the published version of their paper.

  2. As noted in the footnote to Remark 5.7, the authors of [10] fixed this issue in the published version of their paper.

References

  1. Cautis, S., Licata, A.: Vertex operators and 2-representations of quantum affine algebras. arxiv:1112.6189v2

  2. Cautis, S., Licata, A.: Heisenberg categorification and Hilbert schemes. Duke Math. J. 161(13), 2469–2547 (2012). doi:10.1215/00127094-1812726

    Article  MathSciNet  MATH  Google Scholar 

  3. Cautis, S., Lauda, A., Licata, A., Sussan, J.: \(W\)-algebras from Heisenberg categories. arxiv:1501.00589v1

  4. Cautis, S., Licata, A., Sussan, J.: Braid group actions via categorified Heisenberg complexes. Compos. Math. 150(1), 105–142 (2014). doi:10.1112/S0010437X13007367

    Article  MathSciNet  MATH  Google Scholar 

  5. Cautis, S., Sussan, J.: On a categorical Boson–Fermion correspondence. Commun. Math. Phys. 336(2), 649–669 (2015). doi:10.1007/s00220-015-2310-3

    Article  MATH  Google Scholar 

  6. Frenkel, I.B., Jing, N., Wang, W.: Vertex representations via finite groups and the McKay correspondence. Int. Math. Res. Not. 4, 195–222 (2000). doi:10.1155/S107379280000012X

    Article  MathSciNet  MATH  Google Scholar 

  7. Frenkel, I.B., Jing, N., Wang, W.: Twisted vertex representations via spin groups and the McKay correspondence. Duke Math. J. 111(1), 51–96 (2002). doi:10.1215/S0012-7094-02-11112-0

    Article  MathSciNet  MATH  Google Scholar 

  8. Geissinger, L.: Hopf algebras of symmetric functions and class functions. In: Combinatoire et représentation du groupe symétrique (Actes Table Ronde C.N.R.S., Univ. Louis-Pasteur Strasbourg, Strasbourg, 1976). Lecture Notes in Mathematics, Vol. 579, pp. 168–181. Springer, Berlin (1977)

  9. Huerfano, R.S., Khovanov, M.: A category for the adjoint representation. J. Algebra 246(2), 514–542 (2001). doi:10.1006/jabr.2001.8962

    Article  MathSciNet  MATH  Google Scholar 

  10. Hill, D., Sussan, J.: A categorification of twisted Heisenberg algebras. arxiv:1501.00283v1

  11. Józefiak, T.: Characters of projective representations of symmetric groups. Expos. Math. 7(3), 193–247 (1989)

    MathSciNet  MATH  Google Scholar 

  12. Jing, N., Wang, W.: Twisted vertex representations and spin characters. Math. Z. 239(4), 715–746 (2002). doi:10.1007/s002090100340

    Article  MathSciNet  MATH  Google Scholar 

  13. Khovanov, M.: Categorifications from planar diagrammatics. Jpn. J. Math. 5(2), 153–181 (2010). doi:10.1007/s11537-010-0925-x

    Article  MathSciNet  MATH  Google Scholar 

  14. Khovanov, M.: Heisenberg algebra and a graphical calculus. Fund. Math. 225(1), 169–210 (2014). doi:10.4064/fm225-1-8

    Article  MathSciNet  MATH  Google Scholar 

  15. Kleshchev, A.: Linear and projective representations of symmetric groups, volume 163 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2005). doi:10.1017/CBO9780511542800

  16. Krug, A.: Symmetric quotient stacks and Heisenberg actions. arxiv:1501.07253v1

  17. Licata, A., Savage, A.: A survey of Heisenberg categorification via graphical calculus. Bull. Inst. Math. Acad. Sin. (N.S.), 7(2), 291–321 (2012). http://web.math.sinica.edu.tw/bulletin_ns/20122/2012203.pdf

  18. Licata, A., Savage, A.: Hecke algebras, finite general linear groups, and Heisenberg categorification. Quantum Topol. 4(2), 125–185 (2013). doi:10.4171/QT/37

    Article  MathSciNet  MATH  Google Scholar 

  19. Macdonald, I.G.: Polynomial functors and wreath products. J. Pure Appl. Algebra 18(2), 173–204 (1980). doi:10.1016/0022-4049(80)90128-0

    Article  MathSciNet  MATH  Google Scholar 

  20. Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, second edition, With contributions by A. Oxford Science Publications, Zelevinsky (1995)

  21. Pike, J., Savage, A.: Twisted Frobenius extensions of graded superrings. Algebr. Represent. Theory 19(1), 113–133 (2016). doi:10.1007/s10468-015-9565-4

    Article  MathSciNet  MATH  Google Scholar 

  22. Ram, A., Ramagge, J.: Affine Hecke algebras, cyclotomic Hecke algebras and Clifford theory. In A tribute to C. S. Seshadri (Chennai, 2002), Trends Math., pages 428–466. Birkhäuser, Basel (2003)

  23. Rosso, D., Savage, A.: Towers of graded superalgebras categorify the twisted Heisenberg double. J. Pure Appl. Algebra 219(11), 5040–5067 (2015). doi:10.1016/j.jpaa.2015.03.016

    Article  MathSciNet  MATH  Google Scholar 

  24. Rosso, D., Savage, A.: Twisted Heisenberg doubles. Comm. Math. Phys. 337(3), 1053–1076 (2015). doi:10.1007/s00220-015-2330-z

    Article  MathSciNet  MATH  Google Scholar 

  25. Sergeev, A.: The Howe duality and the projective representations of symmetric groups. Represent. Theory 3, 416–434 (1999). doi:10.1090/S1088-4165-99-00085-0. (Electronic)

    Article  MathSciNet  MATH  Google Scholar 

  26. Savage, A., Yacobi, O.: Categorification and Heisenberg doubles arising from towers of algebras. J. Combin. Theory Ser. A 129, 19–56 (2015). doi:10.1016/j.jcta.2014.09.002

    Article  MathSciNet  MATH  Google Scholar 

  27. Webster, B.: Knot invariants and higher representation theory. arxiv:1309.3796v2

  28. Wan, J., Wang, W.: Lectures on spin representation theory of symmetric groups. Bull. Inst. Math. Acad. Sin. (N.S.), 7(1), 91–164 (2012). http://web.math.sinica.edu.tw/bulletin_ns/20121/2012104.pdf

Download references

Acknowledgements

The authors would like to thank A. Licata and S. Cautis for sharing their preliminary notes, based on conversations with M. Khovanov, regarding Heisenberg categorification depending on symmetric Frobenius algebras. They would also like to thank J. Brundan, A. Licata, A. Ram, J. Sussan, and O. Yacobi for useful conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alistair Savage.

Additional information

The second author was supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosso, D., Savage, A. A general approach to Heisenberg categorification via wreath product algebras. Math. Z. 286, 603–655 (2017). https://doi.org/10.1007/s00209-016-1776-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-016-1776-9

Keywords

Mathematics Subject Classification

Navigation