Skip to main content
Log in

Quadratic polynomials at prime arguments

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

For a fixed quadratic irreducible polynomial f with no fixed prime factors at prime arguments, we prove that there exist infinitely many primes p such that f(p) has at most 4 prime factors, improving a classical result of Richert who requires 5 in place of 4. Denoting by \(P^+(n)\) the greatest prime factor of n, it is also proved that \(P^+(f(p))>p^{0.847}\) infinitely often.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Dartyge, C.: Le plus grand facteur premier de \(n^2+1\)\(n\) est presque premier. Acta Arith. 76, 199–226 (1996)

    MathSciNet  Google Scholar 

  2. Deshouillers, J.-M., Iwaniec, H.: On the greatest prime factor of \(n^2+1\). Ann. Inst. Fourier (Grenoble) 32, 1–11 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Diamond, H.G., Halberstam, H.: A Higher-Dimensional Sieve Method, Cambridge Tracts in Math, vol. 177. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  4. Friedlander, J.B., Iwaniec, H.: Hyperbolic prime number theorem. Acta Math. 202, 1–19 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Friedlander, J.B., Iwaniec, H.: Opera de Cribro. American Mathematical Society Colloquium Publications, vol. 57. AMS, Providence (2010)

    MATH  Google Scholar 

  6. Heath-Brown, D.R.: The square sieve and consecutive square-free numbers. Math. Ann. 266, 251–259 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hooley, C.: On the greatest prime factor of a quadratic polynomial. Acta Math. 117, 281–299 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  8. Irving, A.J.: Almost-prime values of polynomials at prime arguments. Bull. Lond. Math. Soc. 47, 593–606 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Iwaniec, H.: Almost-primes represented by quadratic polynomials. Invent. Math. 47, 171–188 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  10. Iwaniec, H.: A new form of the error term in the linear sieve. Acta Arith. 37, 307–320 (1980)

    MathSciNet  MATH  Google Scholar 

  11. Iwaniec, H., Kowalski, E.: Analytic Number. American Mathematical Society Colloquium Publications, vol. 53. AMS, Providence (2004)

    Book  MATH  Google Scholar 

  12. Lemke Oliver, R.J.: Almost-primes represented by quadratic polynomials. Acta Arith. 151, 241–261 (2012)

  13. Richert, H.-E.: Selberg’s sieve with weights. Mathematika 16, 1–22 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wolke, D.: Über die mittlere Verteilung der Werte zahlentheoretischer Funktionen auf Restklassen. II. Math. Ann. 204, 145–153 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wu, J., Xi, P.: Arithmetic exponent pairs for algebraic trace functions and applications. arXiv:1603.07060 [math.NT]

  16. Zhang, Y.: Bounded gaps between primes. Ann. Math. 179, 1121–1174 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the referee for many valuable comments. The first author is supported in part by IRT1264 from the Ministry of Education of P. R. China and the second author is supported by CPSF (No. 2015M580825) and NSF (No. 11601413) of P. R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Xi.

Appendix: Composition of two linear sieves

Appendix: Composition of two linear sieves

In this appendix, we formulate a reduction of Friedlander and Iwaniec on the composition of two sieves. In particular, we focus on linear sieves. The original statement with proof can be found in [4, Appendix A] or [5, Section 5.10].

Theorem 6.1

Let \((\lambda _1),\) \((\lambda _2)\) be two upper-bound linear sieves of levels \(D_1,D_2,\) respectively, and let \(g_1,g_2\) be density functions satisfying linear sieve conditions and

$$\begin{aligned} 0\leqslant g_1(p),g_2(p)\leqslant \tfrac{1}{2} \end{aligned}$$
(6.1)

for each prime p. Then

$$\begin{aligned} \left| \mathop {\sum \sum }_{(d_1,d_2)=1}\lambda _1(d_1)\lambda _2(d_2)g_1(d_1)g_2(d_2)\right| \leqslant \frac{4H\{1+o(1)\}}{\log D_1\log D_2} \end{aligned}$$

with

$$\begin{aligned} H := \prod _{p}(1-g_1(p)-g_2(p))(1-1/p)^{-2}. \end{aligned}$$

One can see that we have an extra condition (6.1) compared to the original version of Friedlander and Iwaniec, for whom the constant H should be replaced by the following larger one

$$\begin{aligned} \prod _{p}(1-g_1(p)-g_2(p)+2g_1(p)g_2(p))(1-1/p)^{-2}. \end{aligned}$$

The modification here is due to avoiding the use of the trivial inequality

$$\begin{aligned} \left| 1-\frac{g_1g_2}{(1-g_1)(1-g_2)}\right| \leqslant 1+\frac{g_1g_2}{(1-g_1)(1-g_2)} \end{aligned}$$

at primes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Xi, P. Quadratic polynomials at prime arguments. Math. Z. 285, 631–646 (2017). https://doi.org/10.1007/s00209-016-1737-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-016-1737-3

Keywords

Mathematics Subject Classification

Navigation