Skip to main content
Log in

A Morita theorem for modular finite W-algebras

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We consider the Lie algebra \(\mathfrak {g}\) of a simple, simply connected algebraic group over a field of large positive characteristic. For each nilpotent orbit \(\mathcal {O}\subseteq \mathfrak {g}\) we choose a representative \(e\in \mathcal {O}\) and attach a certain filtered, associative algebra \(\widehat{U}(\mathfrak {g},e)\) known as a finite W-algebra, defined to be the opposite endomorphism ring of the generalised Gelfand–Graev module associated to \((\mathfrak {g}, e)\). This is shown to be Morita equivalent to a certain central reduction of the enveloping algebra of \(U(\mathfrak {g})\). The result may be seen as a modular version of Skryabin’s equivalence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourbaki, N.: Elements of Mathematics. Commutative Algebra. Chapter I. Reprint of the 1998 Origina. Springer, Berlin (2007)

    Google Scholar 

  2. Bezrukavnikov, R., Kaledin, D.: Fedosov quantization in positive characteristic. J. Am. Math. Soc. 21(2), 409–438 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Elashvili, A.G., Kac, V.G.: Classification of good gradings of simple Lie algebras. In: Vinberg, E. (ed.), Lie Groups and Invariant Theory. Providence, RI: American Mathematical Society (AMS). Translations: Series 2. American Mathematical Society 213. Advances in the Mathematical Sciences 56, pp. 85–104 (2005)

  4. Farnsteiner, R., Strade, H.: Modular Lie Algebras and Their Representations. Monographs and Textbooks in Pure and Applied Mathematics, vol. 16. Marcel Dekker, New York, Basel (1988)

  5. Friedlander, E., Parshall, B.: Modular representation theory of Lie algebras. Am. J. Math. 110(6), 1055–1093 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ginzburg, V.: Harish-Chandra bimodules for quantized Slodowy slices. Represent. Theory 13, 236–271 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Goodwin, S.M., Topley, L.: Structure theory of modular finite \(W\)-algebras. Preprint (2016)

  8. Jantzen, J.C.: Representations of Lie algebras in prime characteristic. In: Broer, A. (eds.) Representation Theories and Algebraic Geometry, Proceedings. Montreal, NATO ASI Series, vol. C 514, pp. 185–235 (1998)

  9. Jantzen, J.C.: Nilpotent Orbits in Representation Theory. Lie Theory, 1211, Progr. Math., 228. Birkhuser Boston, Boston (2004)

    Google Scholar 

  10. Jantzen, J.C.: Representations of Lie algebras in positive characteristic. Representation Theory of Algebraic Groups and Quantum Groups, Adv. Stud. Pure Math., 40, Math. Soc. Japan, Tokyo, pp. 175–218 (2004)

  11. Kac, V., Wiesfeiler, B.: The irreducible representations of Lie p-algebras. Funkcional Anal. i Priloz̆en 5(2), 28–36 (1971). (Russian)

    MathSciNet  Google Scholar 

  12. Losev, I.: Finite W-algebras. In: Proceedings of the International Congress of Mathematicians. vol. III, 12811307. Hindustan Book Agency, New Delhi (2010)

  13. Losev, I.: Quantized symplectic actions and W-algebras. J. Am. Math. Soc. 23(1), 35–59 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. McConnell, J.C., Robson, J.C.: Non-commutative Noetherian Rings. Revised edition. Graduate Studies in Mathematics, vol. 30. American Mathematical Society, Providence, RI (2001)

  15. Pierce, R.S.: Associative Algebras. Graduate Texts in Mathematics. Springer, New York (1982)

    Book  Google Scholar 

  16. Pommerening, K.: Über die unipotenten Klassen reduktiver Gruppen II. J. Algebra 65, 373–398 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Premet, A., Stewart, D.: Rigid orbits and sheets in reductive Lie algebras over fields of prime characteristic. arXiv:1507.05303v2 [math.RT] (2015)

  18. Premet, A.: Irreducible representations of Lie algebras of reductive groups and the Kac–Weisfeiler conjecture. Invent. Math. 121(1), 79–117 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Premet, A.: Special transverse slices and their enveloping algebras. With an appendix by Serge Skryabin. Adv. Math. 170(1), 1–55 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Premet, A.: Nilpotent orbits in good characteristic and the Kempf–Rousseau theory. J. Algebra 260, 338–366 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Premet, A.: Primitive ideals, non-restricted representations and finite \(W\)-algebras. Mosc. Math. J. 7(4), 743–762 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Premet, A.: Commutative quotients of finite \(W\)-algebras. Adv. Math. 225(1), 269–306 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Premet, A.: Multiplicity-free primitive ideals associated with rigid nilpotent orbits. Transform. Groups 19(2), 569–641 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Springer, T. A., Steinberg, R.: Conjugacy classes. 1970 Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) pp. 167–266 Lecture Notes in Mathematics, vol. 131. Springer, Berlin (1970)

  25. Steinberg, R.: Automorphisms of classical Lie algebras. Pac. J. Math. 11(3), 1119–1129 (1961)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

I would like to thank the anonymous referee for making many helpful suggestions to improve the clarity of this article, and for explaining the simple argument for Theorem 8.2. I would also like to thank Vanessa Miemietz and Shaun Stevens at the University of East Anglia for many useful discussions, and Max Nazarov for hosting me at the University of York. The research leading to these results has received funding from the European Commission, Seventh Framework Programme, under Grant Agreement No. 600376, as well as Grant CPDA125818/12 from the University of Padova.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. W. Topley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Topley, L.W. A Morita theorem for modular finite W-algebras. Math. Z. 285, 685–705 (2017). https://doi.org/10.1007/s00209-016-1724-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-016-1724-8

Keywords

Mathematics Subject Classification

Navigation