Skip to main content
Log in

Hermite–Padé approximation, isomonodromic deformation and hypergeometric integral

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We develop an underlying relationship between the theory of rational approximations and that of isomonodromic deformations. We show that a certain duality in Hermite’s two approximation problems for functions leads to the Schlesinger transformations, i.e. transformations of a linear differential equation shifting its characteristic exponents by integers while keeping its monodromy invariant. Since approximants and remainders are described by block-Toeplitz determinants, one can clearly understand the determinantal structure in isomonodromic deformations. We demonstrate our method in a certain family of Hamiltonian systems of isomonodromy type including the sixth Painlevé equation and Garnier systems; particularly, we present their solutions written in terms of iterated hypergeometric integrals. An algorithm for constructing the Schlesinger transformations is also discussed through vector continued fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aomoto, K., Kita, M.: Theory of Hypergeometric Functions. Springer, Tokyo (2011)

    Book  MATH  Google Scholar 

  2. Baker, G., Graves-Morris, P.: Padé Approximants, 2nd edn. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  3. Chudnovsky, D.V., Chudnovsky, G.V.: Bäcklund transformations for linear differential equations and Padé approximations. I. J. Math. Pures Appl. 61, 1–16 (1982)

    MATH  Google Scholar 

  4. Chudnovsky, D.V., Chudnovsky, G.V.: Explicit continued fractions and quantum gravity. Acta Appl. Math. 36, 167–185 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Coates, J.: On the algebraic approximation of functions. I. Indag. Math. 28, 421–434 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  6. Haraoka, Y.: Regular coordinates and reduction of deformation equations for Fuchsian systems. In: Balser, W., Filipuk, G., Łysik, G., Michalik, S. (eds.) Formal and Analytic Solutions of Differential and Difference Equations, pp. 39–58. Polish Academy of Sciences Institute of Mathematics, Warsaw (2012)

    Google Scholar 

  7. Ikawa, Y.: Hypergeometric solutions for the \(q\)-Painlevé equation of type \(E^{(1)}_6\) by the Padé method. Lett. Math. Phys. 103, 743–763 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ishikawa, M., Mano, T., Tsuda, T.: Determinant structure for \(\tau \)-function of holonomic deformation of linear differential equations. (in preparation)

  9. Jimbo, M., Miwa, T.: Monodromy perserving deformation of linear ordinary differential equations with rational coefficients. II. Phys. D 2, 407–448 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jimbo, M., Miwa, T., Ueno, K.: Monodromy perserving deformation of linear ordinary differential equations with rational coefficients. I. Phys. D 2, 306–352 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jones, W.B., Thron, W.J.: Continued Fractions: Analytic Theory and Applications, reissue edn. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  12. Kato, Y., Aomoto, K.: Jacobi-Perron algorithms, bi-orthogonal polynomials and inverse scattering problems. Publ. Res. Inst. Math. Sci. 20, 635–658 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  13. Laguerre, E.: Sur la réduction en fractions continues d’une fonction qui satisfait à une équation linéaire du premier ordre à coefficients rationnels. Bull. Soc. Math. France 8, 21–27 (1880)

    MathSciNet  Google Scholar 

  14. Magnus, A.P.: Painlevé-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials. J. Comput. Appl. Math. 57, 215–237 (1995)

    Article  MATH  Google Scholar 

  15. Mahler, K.: Perfect systems. Compos. Math. 19, 95–166 (1968)

    MathSciNet  MATH  Google Scholar 

  16. Mano, T.: Determinant formula for solutions of the Garnier system and Padé approximation. J. Phys. A: Math. Theor. 45, 135206 (2012)

    Article  MATH  Google Scholar 

  17. Nagao, H.: The Padé interpolation method applied to \(q\)-Painlevé equations. Lett. Math. Phys. 105, 503–521 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nikishin, E.M., Sorokin, V.N.: Rational Approximations and Orthogonality. American Mathematical Society, Providence (1991)

    MATH  Google Scholar 

  19. Noumi, M., Tsujimoto, S., Yamada, Y.: Padé interpolation for elliptic Painlevé equation. In: Iohara, K., Morier-Genoud, S., Rémy, B. (eds.) Symmetries, Integrable Systems and Representations, pp. 463–482. Springer, London (2013)

    Chapter  Google Scholar 

  20. Parusnikov, V.I.: The Jacobi-Perron algorithm and simultaneous approximation of functions. Math. USSR Sb. 42, 287–296 (1982)

    Article  MATH  Google Scholar 

  21. Perron, O.: Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus. Math. Ann. 64, 1–76 (1907)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schlesinger, L.: Über eine klasse von differentialsystemen beliebiger ordnung mit festen kritischen punkten. J. Reine Angew. Math. 141, 96–145 (1912)

    MATH  Google Scholar 

  23. Tsuda, T.: Universal characters and an extension of the KP hierarchy. Commun. Math. Phys. 248, 501–526 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tsuda, T.: From KP/UC hierarchies to Painlevé equations. Int. J. Math 23, 1250010 (2012)

    Article  MATH  Google Scholar 

  25. Tsuda, T.: Hypergeometric solution of a certain polynomial Hamiltonian system of isomonodromy type. Q. J. Math. 63, 489–505 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tsuda, T.: UC hierarchy and monodromy preserving deformation. J. Reine Angew. Math. 690, 1–34 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tsuda, T.: On a fundamental system of solutions of a certain hypergeometric equation. Ramanujan J. 38, 597–618 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yamada, Y.: Padé method to Painlevé equations. Funkcial. Ekvac. 52, 83–92 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are deeply grateful to Shuhei Kamioka for giving them an exposition on various multi-dimensional continued fractions. They appreciate Satoshi Tsujimoto his kind information about literature on rational approximations. Also, they have benefited from invaluable discussions with Yasuhiko Yamada. This work was supported in part by a grant-in-aid from the Japan Society for the Promotion of Science (Grant Numbers 25800082 and 25870234).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruhisa Tsuda.

Appendix A: Verification of (5.4)

Appendix A: Verification of (5.4)

Usually, we often normalize the Fuchsian system (5.1) so that \(A_{N+2}=-\sum _{i=0}^{N+1} A_i \) (the residue matrix at \(z=\infty \)) is diagonal when considering its isomonodromic deformation; see e.g. [10]. But, in this paper, we adopt a different normalization treating the two points \(z=0\) and \(z=\infty \) equally; i.e. we choose \(A_{N+1}\) (the residue matrix at \(z=0\)) and \(A_{N+2}\) to be upper and lower triangular, respectively. Note that the latter normalization is more versatile in a general setting than the former. In this appendix, for a supplement to Sect. 5.1, we demonstrate how to determine the coefficient \(B_i=B_i(z)\) of the deformation equation (5.2):

$$\begin{aligned} \frac{\partial Y}{\partial u_i} =B_i Y \end{aligned}$$

of (5.1).

Differentiating (5.3) with respect to \(u_j\) tells us that

  • if \(i \ne j\) then \(\displaystyle \frac{\partial Y}{\partial u_j} Y^{-1}\) is holomorphic at \(z=u_i\);

  • if \(i=j\) then \(\displaystyle \frac{\partial Y}{\partial u_i} Y^{-1}= - \frac{A_i}{z-u_i} +(\text {holomorphic at } z=u_i)\).

Similarly, we observe that

$$\begin{aligned} \frac{\partial Y}{\partial u_i} Y^{-1}=\frac{\partial \Psi }{\partial u_i} \Psi ^{-1} = \begin{bmatrix} 0&\quad *&\quad \cdots&\quad * \\&\quad 0&\quad \ddots&\quad \vdots \\&~&\quad \ddots&\quad * \\&~&~&\quad 0 \end{bmatrix} +O(z) \quad \text {near } z=0 \end{aligned}$$
(A.1)

and

$$\begin{aligned} \frac{\partial Y}{\partial u_i} Y^{-1}=\frac{\partial \Phi }{\partial u_i} \Phi ^{-1} = \begin{bmatrix} *&~&\\ \vdots&\quad \ddots&\\ *&\quad \cdots&\quad * \end{bmatrix} +O(w) \quad \text {near } z=1/w=\infty . \end{aligned}$$
(A.2)

Here we have used the assumption that the connection matrix C does not depend on \(u_i\). Consequently, \(\displaystyle B_i= \frac{\partial Y}{\partial u_i} Y^{-1}\) is a rational function matrix in z that has only a simple pole at \(z=u_i\) with residue \(-A_i\) and thus

$$\begin{aligned} B_i= \frac{A_i}{u_i-z}+K_i, \end{aligned}$$

where \(K_i\) is a constant matrix. Substituting \(z=\infty \) (\(w=0\)) in (A.2) shows that \(K_i\) is a lower triangular matrix. Therefore, substituting \(z=0\) in (A.1), we conclude that \(K_i=- (A_i)_\mathrm{LT}/u_i\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mano, T., Tsuda, T. Hermite–Padé approximation, isomonodromic deformation and hypergeometric integral. Math. Z. 285, 397–431 (2017). https://doi.org/10.1007/s00209-016-1713-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-016-1713-y

Keywords

Mathematics Subject Classification

Navigation