Skip to main content
Log in

Newton–Okounkov convex bodies of Schubert varieties and polyhedral realizations of crystal bases

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

A Newton–Okounkov convex body is a convex body constructed from a projective variety with a valuation on its homogeneous coordinate ring; this is deeply connected with representation theory. For instance, the Littelmann string polytopes and the Feigin–Fourier–Littelmann–Vinberg polytopes are examples of Newton–Okounkov convex bodies. In this paper, we prove that the Newton–Okounkov convex body of a Schubert variety with respect to a specific valuation is identical to the Nakashima–Zelevinsky polyhedral realization of a Demazure crystal. As an application of this result, we show that Kashiwara’s involution (\(*\)-operation) corresponds to a change of valuations on the rational function field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, D.: Okounkov bodies and toric degenerations. Math. Ann. 356, 1183–1202 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berenstein, A., Zelevinsky, A.: Tensor product multiplicities, canonical bases and totally positive varieties. Invent. Math. 143, 77–128 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cox, D., Little, J., Schenck, H.: Toric Varieties, Graduate Studies in Mathematics, vol. 124. American Mathematical Society, Providence, RI (2011)

    Google Scholar 

  4. Fang, X., Fourier, G., Littelmann, P.: Essential bases and toric degenerations arising from birational sequences, preprint 2015. arXiv:1510.02295

  5. Feigin, E., Fourier, G., Littelmann, P.: Favourable modules: filtrations, polytopes, Newton–Okounkov bodies and flat degenerations, preprint 2013. arXiv:1306.1292

  6. Fujita, N.: Newton–Okounkov bodies for Bott–Samelson varieties and string polytopes for generalized Demazure modules, preprint 2015. arXiv:1503.08916

  7. Geiss, C., Leclerc, B., Schröer, J.: Preprojective algebras and cluster algebras. In: Trends in Representation Theory of Algebras and Related Topics, EMS Ser. Congr. Rep., pp. 253–283. European Mathematical Society, Zürich (2008)

  8. Harada, M., Kaveh, K.: Integrable systems, toric degenerations, and Okounkov bodies. Invent. Math. 202, 927–985 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Harada, M., Yang, J.J.: Newton–Okounkov bodies of Bott–Samelson varieties and Grossberg–Karshon twisted cubes, preprint 2015. arXiv:1504.00982

  10. Hartshorne, R.: Algebraic Geometry, Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)

    Book  Google Scholar 

  11. Jantzen, J.C.: Representations of Algebraic Groups, 2nd edn. Mathematical Surveys and Monographs, vol. 107. American Mathematical Society, Providence, RI (2003)

  12. Jantzen, J.C.: Lectures on Quantum Groups, Graduate Studies in Mathematics, vol. 6. American Mathematical Society, Providence, RI (1996)

    Google Scholar 

  13. Kashiwara, M.: Crystalizing the \(q\)-analogue of universal enveloping algebras. Commun. Math. Phys. 133, 249–260 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kashiwara, M.: On crystal bases of the \(q\)-analogue of universal enveloping algebras. Duke Math. J. 63, 465–516 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kashiwara, M.: Global crystal bases of quantum groups. Duke Math. J. 69, 455–485 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kashiwara, M.: The crystal base and Littelmann’s refined Demazure character formula. Duke Math. J. 71, 839–858 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kaveh, K.: Crystal bases and Newton–Okounkov bodies. Duke Math. J. 164, 2461–2506 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kaveh, K., Khovanskii, A.G.: Convex bodies and algebraic equations on affine varieties, preprint 2008. arXiv:0804.4095; a short version with title “Algebraic equations and convex bodies” appeared in Perspectives in Analysis, Geometry, and Topology, Progr. Math., vol. 296, pp. 263–282. Birkhäuser (2012)

  19. Kaveh, K., Khovanskii, A.G.: Newton–Okounkov bodies, semigroups of integral points, graded algebras and intersection theory. Ann. Math. 176, 925–978 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kiritchenko, V.: Newton–Okounkov polytopes of flag varieties, preprint 2015. arXiv:1506.00362

  21. Lazarsfeld, R., Mustata, M.: Convex bodies associated to linear series. Ann. Sci. I’ENS 42, 783–835 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Littelmann, P.: Cones, crystals, and patterns. Transform. Groups 3, 145–179 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lusztig, G.: Introduction to Quantum Groups, Progr. Math., vol. 110. Birkhäuser (1993)

  24. Nakashima, T.: Polyhedrai realizations of crystal bases for integrable highest weight modules. J. Algebra 219, 571–597 (1999)

    Article  MATH  Google Scholar 

  25. Nakashima, T.: Polytopes for crystallized Demazure modules and extremal vectors. Commun. Algebra 30, 1349–1367 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nakashima, T., Zelevinsky, A.: Polyhedral realizations of crystal bases for quantized Kac–Moody algebras. Adv. Math. 131, 253–278 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Okounkov, A.: Brunn–Minkowski inequality for multiplicities. Invent. Math. 125, 405–411 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Okounkov, A.: Why would multiplicities be log-concave? In: The Orbit Method in Geometry and Physics, Progr. Math., vol. 213, pp. 329–347. Birkhäuser (2003)

  29. Schmitz, D., Seppänen, H.: Global Okounkov bodies for Bott–Samelson varieties, preprint 2014. arXiv:1409.1857

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Fujita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujita, N., Naito, S. Newton–Okounkov convex bodies of Schubert varieties and polyhedral realizations of crystal bases. Math. Z. 285, 325–352 (2017). https://doi.org/10.1007/s00209-016-1709-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-016-1709-7

Keywords

Mathematics Subject Classification

Navigation