Skip to main content
Log in

Minuscule Schubert Varieties: Poset Polytopes, PBW-Degenerated Demazure Modules, and Kogan Faces

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

We study a family of posets and the associated chain and order polytopes. We identify the order polytope as a maximal Kogan face in a Gelfand-Tsetlin polytope of a multiple of a fundamental weight. We show that the character of such a Kogan face equals to the character of a Demazure module which occurs in the irreducible representation of \(\mathfrak {sl}_{n+1}\) having highest weight multiple of fundamental weight and for any such Demazure module there exists a corresponding poset and associated maximal Kogan face. We prove that the chain polytope parametrizes a monomial basis of the associated PBW-graded Demazure module and further, that the Demazure module is a favourable module, e.g. interesting geometric properties are governed by combinatorics of convex polytopes. Thus, we obtain for any minuscule Schubert variety a flat degeneration into a toric projective variety which is projectively normal and arithmetically Cohen-Macaulay. We provide a necessary and sufficient condition on the Weyl group element such that the toric variety associated to the chain polytope and the toric variety associated to the order polytope are isomorphic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexeev, V., Brion, M.: Toric degenerations of spherical varieties. Selecta Math. (N.S.) 10(4), 453–478 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ardila, F., Bliem, T., Salazar, D.: Gelfand-Tsetlin polytopes and Feigin-Fourier-Littelmann-Vinberg polytopes as marked poset polytopes. J. Combin. Theory Ser. A 118(8), 2454–2462 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Backhaus, T., Bossinger, L., Desczyk, C., Fourier, G.: The degree of the Hilbert-Poincaré polynomial of PBW-graded modules. C. R. Math. Acad. Sci. Paris 352(12), 959–963 (2014)

  4. Backhaus, T., Desczyk, C.: PBW filtration: Feigin-Fourier-Littelmann modules via Hasse diagrams. arXiv:1407.73664. J. Lie Theory 25(3), 815–856 (2015)

  5. Cherednik, I., Feigin, E.: Extremal part of the PBW-filtration and E-polynomials. arXiv:1306.3146 (2013)

  6. Cherednik, I., Orr, D.: Nonsymmetric difference Whittaker functions. arXiv:1302.4094 (2013)

  7. De Loera, J.A., McAllister, T.B.: Vertices of Gelfand-Tsetlin polytopes. Discrete Comput. Geom. 32(4), 459–470 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feigin, E., Fourier, G., Littelmann, P.: PBW filtration and bases for irreducible modules in type A n . Transform. Groups 16(1), 71–89 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Feigin, E., Fourier, G., Littelmann, P.: PBW filtration and bases for symplectic Lie algebras. Int. Math. Res. Not. IMRN 1(24), 5760–5784 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Feigin, E., Fourier, G., Littelmann, P.: Favourable modules: Filtrations, polytopes, Newton-Okounkov bodies and flat degenerations. arXiv:1306.1292v3 (2013)

  11. Feigin, E., Fourier, G., Littelmann, P.: PBW-filtration over \(\mathbb {Z}\) and compatible bases for v(λ) in type A n and C n . Springer Proceedings in Mathematics and Statistics 40, 35–63 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feigin, E., Makedonskyi, I.: Nonsymmetric Macdonald polynomials, Demazure modules and PBW filtration. Preprint arXiv:1407.6316 (2014)

  13. Fourier, G.: New homogeneous ideals for current algebras: Filtrations, fusion products and Pieri rules, Preprint: arXiv:1403.4758. Moscow M. Journ. 15(1), 49–72 (2015)

  14. Fourier, G.: PBW-degenerated Demazure modules and Schubert varieties for triangular elements. arXiv:1408.6939 (2014)

  15. Gelfand, I.M., Cetlin, M.L.: Finite-dimensional representations of the group of unimodular matrices. Doklady Akad. Nauk SSSR (N.S.) 71, 825–828 (1950)

    MathSciNet  Google Scholar 

  16. Gonciulea, N., Lakshmibai, V.: Degenerations of flag and Schubert varieties to toric varieties. Transform. Groups 1(3), 215–248 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hibi, T., Li, N.: Unimodular equivalence of order and chain polytopes. arXiv:1208.4029 (2012)

  18. Kashiwara, M.: The crystal base and Littelmann’s refined Demazure character formula. Duke Math. J. 71(3), 839–858 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kogan, M.: Schubert geometry of flag varieties and Gelfand-Cetlin theory. PhD-thesis (2000)

  20. Kirichenko, V.A., Smirnov, E.Yu., Timorin, V.A.: Schubert calculus and Gelfand-Tsetlin polytopes. Uspekhi Mat. Nauk. 67(4(406)), 89–128 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Littelmann, P.: Crystal graphs and Young tableaux. J. Algebra 175(1), 65–87 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Littelmann, P.: Cones, crystals, and patterns. Transform. Groups 3(2), 145–179 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Stanley, R.P.: Hilbert functions of graded algebras. Adv. Math. 28(1), 57–83 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  24. Stanley, R.P.: Two poset polytopes. Discrete Comput. Geom. 1(1), 9–23 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghislain Fourier.

Additional information

Presented by Michel Brion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswal, R., Fourier, G. Minuscule Schubert Varieties: Poset Polytopes, PBW-Degenerated Demazure Modules, and Kogan Faces. Algebr Represent Theor 18, 1481–1503 (2015). https://doi.org/10.1007/s10468-015-9548-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-015-9548-5

Keywords

Mathematics Subject Classification (2010)

Navigation