Skip to main content
Log in

Spectral analysis of the diffusion operator with random jumps from the boundary

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

A Correction to this article was published on 19 August 2019

This article has been updated

Abstract

Using an operator-theoretic framework in a Hilbert-space setting, we perform a detailed spectral analysis of the one-dimensional Laplacian in a bounded interval, subject to specific non-self-adjoint connected boundary conditions modelling a random jump from the boundary to a point inside the interval. In accordance with previous works, we find that all the eigenvalues are real. As the new results, we derive and analyse the adjoint operator, determine the geometric and algebraic multiplicities of the eigenvalues, write down formulae for the eigenfunctions together with the generalised eigenfunctions and study their basis properties. It turns out that the latter heavily depend on whether the distance of the interior point to the centre of the interval divided by the length of the interval is rational or irrational. Finally, we find a closed formula for the metric operator that provides a similarity transform of the problem to a self-adjoint operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

  • 19 August 2019

    We correct a wrong statement in the original article that the studied operator is quasi-accretive. In fact, in this corrigendum we show that the numerical range of the operator coincides with the whole complex plane. We argue that the other statements of in the original article still hold.

References

  1. Ben-Ari, I.: Coupling for drifted Brownian motion on an interval with redistribution from the boundary. Electron. Commun. Probab. 19(16), 1–11 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Ben-Ari, I., Panzo, H., Tripp, E.: Efficient coupling for random walk with redistribution. arXiv:1410.8234 [math.PR] (2014)

  3. Ben-Ari, I., Pinsky, R.G.: Spectral analysis of a family of second-order elliptic operators with nonlocal boundary condition indexed by a probability measure. J. Funct. Anal. 251(1), 122–140 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ben-Ari, I., Pinsky, R.G.: Ergodic behavior of diffusions with random jumps from the boundary. Stoch. Process. Appl. 119, 864–881 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Davies, E.B.: Linear Operators and Their Spectra. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  6. Dieudonné, J.: Quasi–Hermitian operators. In: Proceedings of the International Symposium on Linear Spaces (Jerusalem 1960), Jerusalem Academic Press, Pergamon, Oxford, 1961, pp. 115–123

  7. Gohberg, I.C., Goldberg, S., Kaashoek, M.A.: Classes of Linear Operators, vol. 1. Birkhäuser, Basel (1990)

    Book  MATH  Google Scholar 

  8. Grigorescu, I., Kang, M.: Brownian motion on the figure eight. J. Theoret. Probab. 15, 817–844 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hussein, A., Krejčiřík, D., Siegl, P.: Non-self-adjoint graphs. Trans. Am. Math. Soc. 367, 2921–2957 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1966)

    Book  MATH  Google Scholar 

  11. Kolb, M., Wübker, A.: On the spectral gap of Brownian motion with jump boundary. Electron. J. Probab. 16(43), 1214–1237 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kolb, M., Wübker, A.: Spectral analysis of diffusions with jump boundary. J. Funct. Anal. 261, 1992–2012 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Krejčiřík, D., Siegl, P.: Elements of spectral theory without the spectral theorem. In: Bagarello, F., Gazeau, J.-P., Szafraniec, F.H., Znojil, M. (eds.) Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects, p. 432. Wiley, Hoboken (2015)

    Google Scholar 

  14. Krejčiřík, D., Siegl, P., Tater, M., Viola, J.: Pseudospectra in non-Hermitian quantum mechanics. J. Math. Phys. 56, 103513 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Krejčiřík, D., Siegl, P., Železný, J.: On the similarity of Sturm–Liouville operators with non-Hermitian boundary conditions to self-adjoint and normal operators. Complex Anal. Oper. Theory 8, 255–281 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Leung, Y.J., Li, W.V.: Spectral analysis of Brownian motion with jump boundary. Proc. Am. Math. Soc. 136, 4427–4436 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Schmidt, W.M.: Diophantine Approximation. Springer, Berlin Heidelberg (1980)

    MATH  Google Scholar 

  18. Weidmann, J.: Linear Operators in Hilbert Spaces. Springer, New York (1980)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The research was partially supported by the project RVO61389005 and the GACR grant No. 14-06818S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Krejčiřík.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolb, M., Krejčiřík, D. Spectral analysis of the diffusion operator with random jumps from the boundary. Math. Z. 284, 877–900 (2016). https://doi.org/10.1007/s00209-016-1677-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-016-1677-y

Keywords

Navigation