Skip to main content
Log in

Haglund’s conjecture on 3-column Macdonald polynomials

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We prove a positive combinatorial formula for the Schur expansion of LLT polynomials indexed by a 3-tuple of skew shapes. This verifies a conjecture of Haglund (Proc Natl Acad Sci USA 101(46):16127–16131, 2004). The proof requires expressing a noncommutative Schur function as a positive sum of monomials in Lam’s (Eur J Combin 29(1):343–359, 2008) algebra of ribbon Schur operators. Combining this result with the expression of Haglund et al. (J Am Math Soc 18(3):735–761, 2005) for transformed Macdonald polynomials in terms of LLT polynomials then yields a positive combinatorial rule for transformed Macdonald polynomials indexed by a shape with 3 columns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. There is an algebra antiautomorphism from \(\mathbb {Q}({\hat{q}})\otimes _\mathbf {A}\mathcal {U}/{{I_{\mathrm{L}, k}}}\) to the algebra in [15], defined by sending \(u_i \mapsto u_i\) and setting \(q = {\hat{q}}^{-2}\), where \({\hat{q}}\) denotes the q from [15].

References

  1. Assaf, S.H.: A generalized major index statistic. Sém. Lothar. Combin. 60, Art. B60c, 14 (2008/09)

  2. Assaf, S.H.: Dual equivalence and Schur positivity. http://www-bcf.usc.edu/~shassaf/degs.pdf (2014a)

  3. Assaf, S.H.: Dual equivalence graphs and a combinatorial proof of LLT and Macdonald positivity. http://www-bcf.usc.edu/~shassaf/positivity.pdf (2014b)

  4. Billey, S.C., Jockusch, W., Stanley, R.P.: Some combinatorial properties of Schubert polynomials. J. Algebraic Combin. 2(4), 345–374 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blasiak, J.: What makes a D\(_0\) graph Schur positive? arXiv:1411.3624 (2014)

  6. Blasiak, J., Fomin, S.: Noncommutative Schur functions, switchboards, and Schur positivity. arXiv:1510.00657 (2015)

  7. Carré, C., Leclerc, B.: Splitting the square of a Schur function into its symmetric and antisymmetric parts. J. Algebraic Combin. 4(3), 201–231 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fishel, S.: Statistics for special \(q, t\)-Kostka polynomials. Proc. Am. Math. Soc. 123(10), 2961–2969 (1995)

    MathSciNet  MATH  Google Scholar 

  9. Fomin, S., Greene, C.: Noncommutative Schur functions and their applications. Discrete Math. 193(1–3), 179–200 (1998). Selected papers in honor of Adriano Garsia (Taormina, 1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gessel, I.M.: Multipartite \(P\)-partitions and inner products of skew Schur functions. In: Combinatorics and Algebra (Boulder, Colo., 1983), vol. 34 of Contemp. Math., pp. 289–317. Amer. Math. Soc., Providence (1984)

  11. Grojnowski, I., Haiman, M: Affine Hecke algebras and positivity of LLT and Macdonald polynomials. Preprint (2007)

  12. Haglund, J.: A combinatorial model for the Macdonald polynomials. Proc. Natl. Acad. Sci. USA 101(46), 16127–16131 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Haglund, J., Haiman, M., Loehr, N.: A combinatorial formula for Macdonald polynomials. J. Am. Math. Soc. 18(3), 735–761 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Haglund, J., Haiman, M., Loehr, N., Remmel, J.B., Ulyanov, A.: A combinatorial formula for the character of the diagonal coinvariants. Duke Math. J. 126(2), 195–232 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lam, T.: Ribbon Schur operators. Eur. J. Combin. 29(1), 343–359 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lapointe, L., Morse, J.: Tableaux statistics for two part Macdonald polynomials. In: Algebraic Combinatorics and Quantum Groups, pp. 61–84. World Scientific, River Edge, New Jersey (2003). http://dx.doi.org/10.1142/9789812775405_0004

  17. Lascoux, A., Leclerc, B., Thibon, J.-Y.: Ribbon tableaux, Hall–Littlewood functions, quantum affine algebras, and unipotent varieties. J. Math. Phys. 38(2), 1041–1068 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lascoux, A., Schützenberger, M.-P.: Le monoïde plaxique. In: Noncommutative Structures in Algebra and Geometric Combinatorics (Naples, 1978), vol. 109 of Quad. “Ricerca Sci.”, pp. 129–156. CNR, Rome (1981)

  19. Leclerc, B., Thibon, J.-Y. (2000) Littlewood–Richardson coefficients and Kazhdan–Lusztig polynomials. In: Combinatorial Methods in Representation Theory (Kyoto, 1998), vol. 28 of Adv. Stud. Pure Math., pp. 155–220. Kinokuniya, Tokyo

  20. Roberts, A.: Dual equivalence graphs revisited and the explicit Schur expansion of a family of LLT polynomials. J. Algebraic Combin. 39(2), 389–428 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. van Leeuwen, Marc, A.A.: Some bijective correspondences involving domino tableaux. Electron. J. Combin.7. Research Paper 35, pp. 25 (electronic) (2000) . http://www.combinatorics.org/Volume_7/Abstracts/v7i1r35.html

  22. Wachs, M.L.: Flagged Schur functions, Schubert polynomials, and symmetrizing operators. J. Combin. Theory Ser. A 40(2), 276–289 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zabrocki, M.: Positivity for special cases of \((q, t)\)-Kostka coefficients and standard tableaux statistics. Electron. J. Combin. 6(R41), 36 (1999)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

I am extremely grateful to Sergey Fomin for his valuable insights and guidance on this project and to John Stembridge for his generous advice and many helpful discussions. I thank Thomas Lam and Sami Assaf for several valuable discussions and Xun Zhu and Caleb Springer for help typing and typesetting figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonah Blasiak.

Additional information

This work was supported by NSF Grant DMS-14071174.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blasiak, J. Haglund’s conjecture on 3-column Macdonald polynomials. Math. Z. 283, 601–628 (2016). https://doi.org/10.1007/s00209-015-1612-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-015-1612-7

Keywords

Navigation