Skip to main content
Log in

Ratio coordinates for higher Teichmüller spaces

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We define new coordinates for Fock–Goncharov’s higher Teichmüller spaces for a surface with holes, which are the moduli spaces of representations of the fundamental group into a reductive Lie group G. Some additional data on the boundary leads to two closely related moduli spaces, the \(\mathscr {X}\)-space and the \(\mathscr {A}\)-space, forming a cluster ensemble. Fock and Goncharov gave nice descriptions of the coordinates of these spaces in the cases of \(G = \mathrm{PGL}_m\) and \(G=\mathrm{SL}_m\), together with Poisson structures. We consider new coordinates for higher Teichmüller spaces given as ratios of the coordinates of the \(\mathscr {A}\)-space for \(G=\mathrm{SL}_m\), which are generalizations of Kashaev’s ratio coordinates in the case \(m=2\). Using Kashaev’s quantization for \(m=2\), we suggest a quantization of the system of these new ratio coordinates, which may lead to a new family of projective representations of mapping class groups. These ratio coordinates depend on the choice of an ideal triangulation decorated with a distinguished corner at each triangle, and the key point of the quantization is to guarantee certain consistency under a change of such choices. We prove this consistency for \(m=3\), and for completeness we also give a full proof of the presentation of Kashaev’s groupoid of decorated ideal triangulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. This may not be a standard terminology.

  2. A ‘seed’ in the usual cluster theory is equipped with cluster variables, like our upcoming \(X_i\)’s and \(\Delta _i\)’s. A seed as defined here is called a ‘feed’ in [9] as a joke, to be distinguished from a usual ‘seed’.

References

  1. Bakalov, B., Kirillov Jr, A.: On the Lego-Teichmüller game. Transform. Groups 5, 207–244 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barnes, E.W.: Theory of the double gamma function. Philos. Trans. R. Soc. A 196, 265–388 (1901)

    Article  MATH  Google Scholar 

  3. Chekhov, L., Fock, V.V.: A quantum Teichmüller space. Theor. Math. Phys. 120, 511–528 (1999)

    MathSciNet  MATH  Google Scholar 

  4. Faddeev, L.D.: Discrete Heisenberg–Weyl group and modular group. Lett. Math. Phys. 34, 249–254 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Faddeev, L.D., Kashaev, R.M.: Quantum dilogarithm. Mod. Phys. Lett. A 9, 427–434 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fock, V.V.: Dual Teichmüller Spaces. arXiv:dg-ga/9702018

  7. Fock, V.V., Goncharov, A.B.: Cluster ensembles, quantization and the dilogarithm. Ann. Sci. Éc. Norm. Supér. (4) 42(6), 865–930 (2009)

  8. Fock, V.V., Goncharov, A.B.: Moduli spaces of local systems and higher Teichmüller theory. Publ. Math. Inst. Hautes Etudes Sci. 103, 1–211 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fock, V.V., Goncharov, A.B.: The quantum dilogarithm and representations of the quantum cluster varieties. Invent. Math. 175, 223–286 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fomin, S., Zelevinsky, A.: Cluster algebras I: Foundations. J. Am. Math. Soc. 15(2), 497–529 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Frenkel, I.B., Kim, H.: Quantum Teichmüller space from the quantum plane. Duke Math. J. 161(2), 305–366 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Funar, L., Kapoudjian, C.: The braided Ptolemy–Thompson group is finitely presented. Geom. Topol. 12, 475–530 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Goncharov, A.B.: Pentagon relation for the quantum dilogarithm and quantized \({\cal {M}}_{0,5}\). In: Geometry and Dynamics of Groups and Spaces (Special Volume Dedicated to the Memory of Alexander Reznikov). Progr. Math., vol. 265, pp. 316–329. Birkhäuser, Basel (2007). arXiv:math.QA/0706405

  14. Hitchin, N.J.: Lie groups and Teichmüller space. Topology 31(3), 449–473 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ip, I.: On tensor products of positive representations of split real quantum Borel subalgebra \(U_{q\widetilde{q}}(b_R)\). arXiv:1405.4786

  16. Kashaev, R.M.: Quantization of Teichmüller spaces and the quantum dilogarithm. Lett. Math. Phys. 43, 105–115 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kashaev, R.M.: On the spectrum of Dehn twists in quantum Teichmüller theory. In: Kirillov, A.N., Liskova, N. (eds.) Physics and combinatorics, vol. 2001, pp. 63–81. Nagoya, World Sci. Publ., River Edge, NJ (2000)

  18. Kim, H.: The dilogarithmic central extension of the Ptolemy-Thompson group via the Kashaev quantization. arXiv:1211.4300

  19. Penner, R.C.: The decorated Teichmüller space of punctured surfaces. Commun. Math. Phys. 113, 299–339 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Penner, R.C.: Universal constructions in Teichmüller theory. Adv. Math. 98, 143–215 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Penner, R.C.: Decorated Teichmüller Theory. European Math. Soc. Publ, Zürich (2012)

    Book  MATH  Google Scholar 

  22. Teschner, J.: An analog of a modular functor from quantized Teichmüller theory. In: Handbook of Teichmüller theory, Vol. I, IRMA Lect. Math. Theor. Phys., 11, pp. 685–760. Eur. Math. Soc., Zürich (2007). arXiv:math.QA/0510174

Download references

Acknowledgments

I thank Ivan Ip for motivation and helpful discussions. I thank Dylan Allegretti for his help on understanding the works of Fock–Goncharov. Finally, I’d like to thank the referee for the reviewing and for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Kyu Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.K. Ratio coordinates for higher Teichmüller spaces. Math. Z. 283, 469–513 (2016). https://doi.org/10.1007/s00209-015-1607-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-015-1607-4

Keywords

Navigation