Skip to main content
Log in

Estimates for trilinear flag paraproducts on \(L^{\infty }\) and Hardy spaces

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

The boundedness of trilinear flag paraproducts from products of Hardy spaces \(H^{p} \times H^q \times H^r\) to \(L^s\), \(1/p+1/q+1/r=1/s\), is discussed in the full range \(0<p,q,r \le \infty \). The range of exponents to allow the boundedness is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coifman, R., Meyer, Y.: Au delà des opérateurs pseudo-différentiels. Astérisque 57, 1–185 (1978)

    MathSciNet  MATH  Google Scholar 

  2. Coifman, R., Meyer, Y.: Nonlinear harmonic analysis, operator theory and P.D.E. In: Beijing Lectures in Harmonic Analysis (Beijing, 1986). Princeton University Press. Princeton, NJ, pp. 3-45 (1984)

  3. Germain, P., Masmoudi, N., Shatah, J.: Global solutions for 2D quadratic Schrödinger equations. J. Math. Pures Appl. 97, 505–543 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Germain, P., Masmoudi, N., Shatah, J.: Global solutions for the gravity water waves equation in dimension 3. Ann. Math. 175, 691–754 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Grafakos, L.: Classical Fourier Analysis, 2nd edn. Springer, New York (2008)

    MATH  Google Scholar 

  6. Grafakos, L.: Modern Fourier Analysis, 2nd edn. Springer, New York (2009)

    Book  MATH  Google Scholar 

  7. Grafakos, L., Kalton, N.: Multilinear Calderón–Zygmund operators on Hardy spaces. Collect. Math. 52, 169–179 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Grafakos, L., Torres, R.: Multilinear Calderón–Zygmund theory. Adv. Math. 165, 124–164 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kenig, C., Stein, E.M.: Multilinear estimates and fractional integration. Math. Res. Lett. 6, 1–15 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lacey, M., Thiele, C.: \(L^p\) estimates on the bilinear Hilbert transform for \(2 <p <\infty \). Ann. Math. 146, 693–724 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lacey, M., Thiele, C.: On Calderón’s conjecture. Ann. Math. 149, 475–496 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Muscalu, C.: Paraproducts with flag singularities I. A case study. Rev. Mat. Iberoam. 23, 705–742 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Muscalu, C.: Flag paraproducts. In Harmonic Analysis and Partial Differential Equations. Contemporary Mathematics, vol. 505, pp. 131-151 (2010)

  14. Muscalu, C., Schlag, W.: Classical and Multilinear Harmonic Analysis, vol. II. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  15. Muscalu, C., Tao, T., Thiele, C.: Multi-linear operators given by singular multipliers. J. Am. Math. Soc. 15, 469–496 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  17. Stein, E.M.: Harmonic Analysis, Real Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  18. Torchinsky, A.: Real-Variable Methods in Harmonic Analysis. Academic Press, Orlando (1986)

    MATH  Google Scholar 

  19. Triebel, H.: Theory of Function Spaces. Birkhäuser Verlag, Basel (1983)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naohito Tomita.

Appendices

Appendix 1

Theorem A shows that bilinear Fourier multipliers in \(\mathcal {M}(\mathbb {R}^{2n})\) induce bounded operators from \(H^p \times H^q\) to \(L^r\) if \(0<p, q\le \infty \), \(0<r<\infty \) and \(1/p+1/q=1/r\). In this theorem, we cannot replace \(H^p\) by \(L^p\) if \(p\le 1\). (By symmetry, we cannot replace \(H^q\) by \(L^q\) if \(q\le 1\) either.) Also, for \(m\in \mathcal {M}(\mathbb {R}^{2n})\), \(T_{m}\) is not always bounded from \(L^{\infty } \times L^{\infty }\) to \(L^{\infty }\). Although these facts may be known to many people, here we give proofs.

We first give an example of \(m\in \mathcal {M}(\mathbb {R}^{2n})\) for which \(T_{m}\) is not bounded from \(L^p \times H^q\) to \(L^r\) for \(0<p\le 1\), \(0<q<\infty \) and \(1/p+1/q=1/r\). We take a sufficiently large integer \(j_0\) satisfying

$$\begin{aligned} \{\xi \in \mathbb {R}^n \mid |\xi -2^je_1| \le 2^{j-j_0}\} \subset \{\xi \in \mathbb {R}^n \mid 2^{j-1/4} \le |\xi | \le 2^{j+1/4}\}, \quad j \in \mathbb {Z}, \end{aligned}$$
(5.1)

where \(e_1=(1,0,\dots ,0) \in \mathbb {R}^n\), and take functions \(\widetilde{\varphi }, \varphi , \psi \in \mathcal {S}(\mathbb {R}^n)\) such that

$$\begin{aligned}&\widetilde{\varphi }(\xi )=1 \ \text {on} \ \{|\xi | \le 2^{-j_0}\},\\&\quad \mathrm {supp}\, \varphi \subset \{|\xi | \le 2^{-j_0}\}, \quad |\mathcal {F}^{-1}\varphi (x)| \ge 1 \ \text {on} \ \{|x| \le 1\},\\&\quad \mathrm {supp}\, \psi \subset \{2^{-1/2} \le |\xi | \le 2^{1/2}\}, \quad \psi (\xi )=1 \ \text {on} \ \{2^{-1/4} \le |\xi | \le 2^{1/4}\}. \end{aligned}$$

We define

$$\begin{aligned} m(\xi ,\eta )=\sum _{j=1}^{\infty } \varphi (\xi /2^j)\psi (\eta /2^j). \end{aligned}$$

This \(m(\xi ,\eta )\) is a typical example of bilinear Fourier multipliers in \(\mathcal {M}(\mathbb {R}^{2n})\). We shall prove that the corresponding operator \(T_m\) is not bounded from \(L^p \times H^q\) to \(L^r\) for \(0<p\le 1\), \(0<q<\infty \) and \(1/p+1/q=1/r\).

To show the unboundedness of \(T_m\), we set

$$\begin{aligned} f_N(x)=2^{Nn}\widetilde{\Phi }(2^Nx), \quad g_{N,t}(x)=\sum _{j=1}^N r_j(t)2^{jn/q} e^{ie_1\cdot (2^jx)}\Phi (2^jx), \end{aligned}$$

where \(\widetilde{\Phi }=\mathcal {F}^{-1}\widetilde{\varphi }\), \(\Phi =\mathcal {F}^{-1}\varphi \) and \(r_j(t)\), \(j \ge 1\), \(0 \le t \le 1\), are the Rademacher functions [5, Appendix C]. We show that the estimate

$$\begin{aligned} \Vert T_m(f_N,g_{N,t})\Vert _{L^r} \lesssim \Vert f_N\Vert _{L^p}\Vert g_{N,t}\Vert _{H^q}, \quad N \ge 1, \ 0 \le t \le 1 \end{aligned}$$
(5.2)

does not hold.

First, observe that \(\Vert f_N\Vert _{L^p} \approx 2^{Nn(1-1/p)}\). Second, since \(\mathcal {F}_{x \rightarrow \xi }\left[ e^{ie_1\cdot x}\Phi (x)\right] =\varphi (\xi -e_1)\), the condition (5.1) and the support condition of \(\varphi \) imply that the support of the Fourier transform of \(e^{ie_1\cdot x}\Phi (x)\) is away from the origin. This means that \(e^{ie_1\cdot x}\Phi (x)\) belongs to \(H^q\) even if \(q \le 1\). Thus, by change of variables,

$$\begin{aligned} \Vert g_{N,t}\Vert _{H^q}&\le {\left\{ \begin{array}{ll} \sum _{j=1}^N \left\| r_j(t)2^{jn/q}e^{ie_1\cdot (2^jx)}\Phi (2^jx) \right\| _{H^q},&{}q>1\\ \left( \sum _{j=1}^N \left\| r_j(t)2^{jn/q}e^{ie_1\cdot (2^jx)}\Phi (2^jx) \right\| _{H^q}^q \right) ^{1/q},&{}q \le 1 \end{array}\right. }\nonumber \\&\approx {\left\{ \begin{array}{ll} \sum _{j=1}^N \left\| \Phi (x) \right\| _{L^q}, &{}q>1 \\ \left( \sum _{j=1}^N \left\| e^{ie_1\cdot x}\Phi (x) \right\| _{H^q}^q \right) ^{1/q}, &{}q \le 1 \end{array}\right. }\nonumber \\&\approx N^{\max \{1,1/q\}}. \end{aligned}$$

Here we emphasize that the implicit constant is independent of t. Third, since \(\widehat{f_N}(\xi )=\widetilde{\varphi }(2^{-N}\xi )\) and

$$\begin{aligned} \widehat{g_{N,t}}(\eta ) =\sum _{j=1}^N r_j(t)2^{jn(1/q-1)} \varphi (2^{-j}(\eta -2^je_1)), \end{aligned}$$

we have, by (5.1) and the properties of \(\widetilde{\varphi }, \varphi , \psi \),

$$\begin{aligned} T_{m}(f_N,g_{N,t})(x) =\sum _{j=1}^N r_j(t)2^{jn(1+1/q)}e^{ie_1\cdot (2^jx)}\Phi (2^jx)^2. \end{aligned}$$

Hence, if (5.2) holds, then we have

$$\begin{aligned} \left( \int _{\mathbb {R}^n} \left| \sum _{j=1}^N r_j(t)2^{jn(1+1/q)}e^{ie_1\cdot (2^j)x}\Phi (2^jx)^2\right| ^r dx \right) ^{1/r} \lesssim 2^{Nn(1-1/p)}N^{\max \{1,1/q\}} \end{aligned}$$

for \(N \ge 1\) and \(0 \le t \le 1\). Since the implicit constant is independent of t, taking \(L^r\)-norm with respect to \(0 \le t \le 1\), we have

$$\begin{aligned} \left( \int _{[0,1]}\int _{\mathbb {R}^n} \left| \sum _{j=1}^N r_j(t)2^{jn(1+1/q)}e^{ie_1\cdot (2^j)x}\Phi (2^jx)^2\right| ^r dxdt \right) ^{1/r} \lesssim 2^{Nn(1-1/p)}N^{\max \{1,1/q\}}. \end{aligned}$$

Furthermore, Khintchine’s inequality [5, Appendix C] gives

$$\begin{aligned} \left\{ \int _{\mathbb {R}^n} \left( \sum _{j=1}^N \left| 2^{jn(1+1/q)}e^{ie_1\cdot (2^j)x}\Phi (2^jx)^2\right| ^2 \right) ^{r/2} dx \right\} ^{1/r} \lesssim 2^{Nn(1-1/p)}N^{\max \{1,1/q\}} \end{aligned}$$

for \(N \ge 1\). Using the fact \(|\Phi (x)| \ge 1\) for \(|x| \le 1\), we see that the left hand side is bounded below by

$$\begin{aligned}&\left\{ \sum _{k=1}^N \int _{\frac{1}{2^{k+1}}<|x|<\frac{1}{2^k}} \left( \sum _{j=1}^N \left| 2^{jn(1+1/q)}\Phi (2^jx)^2\right| ^2 \right) ^{r/2} dx \right\} ^{1/r}\nonumber \\&\quad \ge \left\{ \sum _{k=1}^N\int _{\frac{1}{2^{k+1}}<|x|<\frac{1}{2^k}} \left| 2^{kn(1+1/q)}\Phi (2^kx)^2\right| ^r dx \right\} ^{1/r}\nonumber \\&\quad \ge \left( \sum _{k=1}^N\int _{\frac{1}{2^{k+1}}<|x|<\frac{1}{2^k}} 2^{knr(1+1/q)} dx \right) ^{1/r}\nonumber \\&\quad \approx \left( \sum _{k=1}^N 2^{knr(1-1/p)} \right) ^{1/r} \approx {\left\{ \begin{array}{ll} N^{1/r},&{}p=1\\ 1, &{}p<1. \end{array}\right. } \end{aligned}$$

Thus, if (5.2) holds, then we must have \(N^{1/r} \lesssim N^{\max \{1,1/q\}}\) if \(p=1\) and \(1 \lesssim 2^{Nn(1-1/p)}N^{\max \{1,1/q\}}\) if \(p<1\). But the last inequalities are impossible.

We next give an example of \(m\in \mathcal {M}(\mathbb {R}^{2n})\) for which \(T_{m}\) is not bounded from \(L^p \times L^{\infty }\) to \(L^p\) for \(0<p \le 1\). Let

$$\begin{aligned} m(\xi ,\eta )=\frac{\xi _1}{(|\xi |^2+|\eta |^2)^{1/2}}, \quad \xi ,\eta \in \mathbb {R}^n, \end{aligned}$$

where \(\xi _1 \in \mathbb {R}\) is the first component of \(\xi \). This \(m(\xi ,\eta )\) belongs to \(\mathcal {M}(\mathbb {R}^{2n})\). To see that the corresponding operator \(T_{m}\) is not bounded from \(L^p \times L^{\infty }\) to \(L^p\) if \(p \le 1\), we take a function \(\varphi \in \mathcal {S}(\mathbb {R}^n)\) satisfying \(\int _{\mathbb {R}^n}\varphi (\eta )\, d\eta =(2\pi )^n\), and set \(g_{\epsilon }(x)=[\mathcal {F}^{-1}\varphi ](\epsilon x)\), \(\epsilon >0\). Assume that the estimate

$$\begin{aligned} \Vert T_m(f,g_{\epsilon })\Vert _{L^p} \lesssim \Vert f\Vert _{L^p}\Vert g_{\epsilon }\Vert _{L^{\infty }} \end{aligned}$$
(5.3)

holds for \(f \in \mathcal {S}(\mathbb {R}^n)\) and \(\epsilon >0\). Then by the Lebesgue dominated convergence theorem,

$$\begin{aligned} \lim _{\epsilon \rightarrow 0} T_m(f,g_{\epsilon })(x)&=\lim _{\epsilon \rightarrow 0} \frac{1}{(2\pi )^{2n}} \int _{\mathbb {R}^{2n}} e^{ix\cdot (\xi +\eta )} \frac{\xi _1}{(|\xi |^2+|\eta |^2)^{1/2}} \widehat{f}(\xi )\epsilon ^{-n}\varphi (\epsilon ^{-1}\eta )\, d\xi d\eta \nonumber \\&=\frac{1}{(2\pi )^n} \int _{\mathbb {R}^n} e^{ix\cdot \xi } \frac{\xi _1}{|\xi |} \widehat{f}(\xi )\, d\xi =R_1(f)(x). \end{aligned}$$

Then, by Fatou’s lemma, (5.3) implies

$$\begin{aligned} \Vert R_1(f)\Vert _{L^p} \lesssim \Vert f\Vert _{L^p}. \end{aligned}$$

Hence, we reach the contradiction, since the Riesz transform \(R_1\) is not bounded on \(L^p\) if \(p \le 1\).

The fact that bilinear Fourier multipliers in \(\mathcal {M}(\mathbb {R}^{2n})\) do not always induce bounded operators from \(L^{\infty } \times L^{\infty }\) to \(L^{\infty }\) follows from the second counter example by duality.

Appendix 2

In this appendix, we shall give a proof of

$$\begin{aligned} \Vert f g\Vert _{L^p} \le A\Vert f\Vert _{H^p}, \ f \in H^p \quad \Longrightarrow \quad \Vert g\Vert _{L^{\infty }} \lesssim A, \end{aligned}$$
(6.1)

where the implicit constant is independent of g and A. This fact combined with duality also shows that the multiplication operator \(f\mapsto fg\) is bounded from \(L^{\infty }\) to \(\textit{BMO}\) only if \(g\in L^{\infty }\). Since the case \(p>1\) is well known, we consider only the case \(p \le 1\).

Let \(Q_0=[-1/2,1/2]^n\) and \(P_0\) be a polynomial satisfying

$$\begin{aligned} \Vert P_0\Vert _{L^{\infty }(Q_0)}=1, \quad \int _{Q_0} P_0 (y) y^{\alpha }\, dy=0 \;\;\text {for}\;\; |\alpha |\le [n/p-n]. \end{aligned}$$

Since \(P_0\) is not identically zero, we see that \(|\{y\in Q_0\mid P_0(y)=0\}|=0\). Thus, we can take \(\delta >0\) such that

$$\begin{aligned} |\{y\in Q_0\mid |P_0(y)|> \delta \}|\ge \frac{9}{10}. \end{aligned}$$
(6.2)

For cubes Q in \(\mathbb {R}^n\), we define

$$\begin{aligned} a_{Q}(x) =|Q|^{-1/p} \mathbf {1}_{Q}(x) P_0 \left( \frac{x-c(Q)}{\ell (Q)} \right) , \end{aligned}$$
(6.3)

where we used the same notations \(c_Q\) and \(\ell (Q)\) as in the proof of Lemma 2.5. Then

$$\begin{aligned} \mathrm {supp}\, a_Q \subset Q, \quad \Vert a_Q\Vert _{L^{\infty }}=|Q|^{-1/p}, \quad \int a_{Q}(x)x^{\alpha }\, dx =0 \;\;\text {for}\;\; |\alpha |\le [n/p-n], \end{aligned}$$

and this means that \(a_Q\) is an \(H^p\)-atom. By (6.2),

$$\begin{aligned} |\{x\in Q \mid |a_Q(x)|> \delta |Q|^{-1/p}\}| \ge \frac{9}{10}|Q|. \end{aligned}$$
(6.4)

We assume that a measurable function g satisfies the condition in the left hand side of (6.1). Let \(\lambda >0\) be such that \(|\{x\in \mathbb {R}^n\mid |g(x)|> \lambda \}|>0\). By the Lebesgue differentiation theorem, there exists a cube Q such that

$$\begin{aligned} \left| \{x\in Q \mid |g(x)|> \lambda \}\right| \ge \frac{9}{10}|Q| \end{aligned}$$
(6.5)

(see [16, Chapter 1, Proposition 1]). We consider \(a_Q\) defined by (6.3) with this Q. Then, since \(\Vert a_{Q}\Vert _{H^p}\lesssim 1\), our assumption (namely, the condition in the left hand side of (6.1)) implies

$$\begin{aligned} \int |a_{Q}(x) g(x)|^p\, dx \lesssim A^p. \end{aligned}$$

On the other hand, it follows from (6.4) and (6.5) that

$$\begin{aligned} \left| \{x\in Q \mid |a_Q(x)|> \delta |Q|^{-1/p}, \; |g(x)|> \lambda \}\right| \ge \frac{8}{10}|Q|, \end{aligned}$$

which gives

$$\begin{aligned} \int |a_{Q}(x) g(x)|^p\, dx \ge \int _{Q} \mathbf {1}_{\{|a_Q(x)|> \delta |Q|^{-1/p},\; |g(x)|> \lambda \}} |a_{Q}(x) g(x)|^p\, dx \ge \frac{8}{10}\delta ^p \lambda ^{p}. \end{aligned}$$

Hence, \(\frac{8}{10}\delta ^p \lambda ^{p}\lesssim A^{p}\), that is, \(\lambda \lesssim A\). Thus we proved that \(|\{x\in \mathbb {R}^n\mid |g(x)|> \lambda \}|>0\) holds only for \(\lambda \lesssim A\). This implies \(\Vert g\Vert _{L^{\infty }}\lesssim A\).

Appendix 3

We shall prove the factorization (4.18). For this it is sufficient to show that for every \(u\in L^1\) there exists a \(g\in H^1\) such that \(|g(x)|\le |u(x)|\le 2|g(x)|\) for almost all \(x\in \mathbb {R}^n\) and \(\Vert g\Vert _{H^1}\approx \Vert u\Vert _{L^1}\). Take a \(u\in L^1\). For \(j\in \mathbb {Z}\), set \(E_{j}=\{x \mid 2^j< |u(x)|\le 2^{j+1}\}\) and take a collection \(\{Q_{j,k}\}_{k}\) of disjoint dyadic cubes such that \(|Q_{j,k}\cap E_{j}|\ge 2^{-1}|Q_{j,k}|\) and \(\{Q_{j,k}\}_{k}\) covers \(E_{j}\) except for a null set. We set \(E_{j,k}=Q_{j,k}\cap E_{j}\). We take \(E^{\prime }_{j,k}\subset E_{j,k}\) such that \(|E^{\prime }_{j,k}|=2^{-1}|E_{j,k}|\) and set

$$\begin{aligned} g(x) = \sum _{j}\sum _{k} 2^{j} \left\{ \mathbf {1}_{E^{\prime }_{j,k}}(x) - \mathbf {1}_{E_{j,k}\!\setminus \! E^{\prime }_{j,k}}(x) \right\} . \end{aligned}$$

For almost every \(x\in \mathbb {R}^n\), we have

$$\begin{aligned} |g(x)| = \sum _{j}\sum _{k} 2^{j} \mathbf {1}_{E_{j,k}}(x) =\sum _{j} 2^{j} \mathbf {1}_{E_j}(x) \end{aligned}$$

and thus \(|g(x)|\le |u(x)|\le 2|g(x)|\). Since \(|Q_{j,k}|^{-1} \left\{ \mathbf {1}_{E^{\prime }_{j,k}}(x) - \mathbf {1}_{E_{j,k}\!\setminus \! E^{\prime }_{j,k}}(x)\} \right\} \) is an \(H^1\)-atom, we have

$$\begin{aligned} \Vert g\Vert _{H^1} \lesssim \sum _{j}\sum _{k} 2^{j}|Q_{j,k}| \approx \sum _{j}\sum _{k} 2^{j}|E_{j,k}| \approx \Vert u\Vert _{L^1}. \end{aligned}$$

The converse inequality \(\Vert g\Vert _{H^1}\gtrsim \Vert u\Vert _{L^1}\) is obvious since \(|g(x)|\approx |u(x)|\) almost everywhere.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyachi, A., Tomita, N. Estimates for trilinear flag paraproducts on \(L^{\infty }\) and Hardy spaces. Math. Z. 282, 577–613 (2016). https://doi.org/10.1007/s00209-015-1554-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-015-1554-0

Keywords

Mathematics Subject Classification

Navigation