Skip to main content
Log in

Some Calderón–Zygmund kernels and their relations to Wolff capacities and rectifiability

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We consider the Calderón–Zygmund kernels \(K_ {\alpha ,n}(x)=(x_i^{2n-1}/|x|^{2n-1+\alpha })_{i=1}^d\) in \({\mathbb R}^d\) for \(0<\alpha \le 1\) and \(n\in \mathbb {N}\). We show that, on the plane, for \(0<\alpha <1\), the capacity associated to the kernels \(K_{\alpha ,n}\) is comparable to the Riesz capacity \(C_{\frac{2}{3}(2-\alpha ),\frac{3}{2}}\) of non-linear potential theory. As consequences we deduce the semiadditivity and bilipschitz invariance of this capacity. Furthermore we show that for any Borel set \(E\subset {\mathbb R}^d\) with finite length the \(L^2(\mathcal {H}^1 \lfloor E)\)-boundedness of the singular integral associated to \(K_{1,n}\) implies the rectifiability of the set E. We thus extend to any ambient dimension, results previously known only in the plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Calderón, A.C.: Cauchy integrals on Lipschitz curves and related operators. Proc. Nat. Acad. Sci. USA. 74(4), 1324–1327 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory, Grundl. Math. Wiss., vol. 314. Springer, Berlin (1996)

    Book  Google Scholar 

  3. Chousionis, V., Mateu, J., Prat, L., Tolsa, X.: Calderón–Zygmund kernels and rectifiability in the plane. Adv. Math. 231(1), 535–568 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chousionis, V., Mateu, J., Prat, L., Tolsa, X.: Capacities associated with Calderón–Zygmund kernels. Potential Anal. 38(3), 913–949 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. David, G.: Unrectifiable 1-sets have vanishing analytic capacity. Rev. Mat. Iberoam. 14(2), 369–479 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. David, G., Semmes, S.: Singular Integrals and rectifiable sets in \(\mathbb{R}^{n}\): Au-delà des graphes lipschitziens. Astérisque 193, Société Mathématique de France (1991)

  7. David, G., Semmes, S.: Analysis of and on Uniformly Rectifiable Sets. Mathematical Surveys and Monographs, vol. 38. American Mathematical Society, Providence, RI (1993)

    Book  MATH  Google Scholar 

  8. Duoandikoetxea, J.: Fourier Analysis. American Mathematical Society, Providence, RI (2001)

    MATH  Google Scholar 

  9. Eiderman, V., Nazarov, F., Volberg, A.: Vector-valued Riesz potentials: Cartan-type estimates and related capacities. Proc. Lond. Math. Soc. 101(3), 727–758 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Garnett, J., Verdera, J.: Analytic capacity, bilipschitz maps and Cantor sets. Math. Res. Lett. 10(4), 515–522 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Garnett, J., Prat, L., Tolsa, X.: Lipschitz harmonic capacity and bilipschitz images of Cantor sets. Math. Res. Lett. 13(5–6), 865–884 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Léger, J.C.: Menger curvature and rectifiability. Ann. Math. 149, 831–869 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lyons, R., Zumbrun, K.: Homogeneous partial derivatives of radial functions. Proc. Am. Math. Soc. 121(1), 315–316 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mattila, P., Melnikov, M., Verdera, J.: The Cauchy integral, analytic capacity, and uniform rectifiability. Ann. Math. (2) 144(1), 127–136 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mattila, P., Paramonov, P.V.: On geometric properties of harmonic \(\text{ Lip }_1\)-capacity. Pac. J. Math. 171(2), 469–491 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mateu, J., Prat, L., Verdera, J.: The capacity associated to signed Riesz kernels, and Wolff potentials. J. Reine Angew. Math. 578, 201–223 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Mateu, J., Prat, L., Verdera, J.: Potential theory of scalar Riesz kernels. Indiana Univ. Math. J. 60(4), 1319–1361 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Maz’ya, V.G., Shaposhnikova, T.O.: Theory of Multipliers in Spaces of Differentiable Functions, Monographs and Studies in Mathematics 23. Pitman (Advanced Publishing Program), Boston, MA (1985)

    MATH  Google Scholar 

  19. Melnikov, M.S.: Analytic capacity: discrete approach and curvature of measure. Sb. Math. 186(6), 827–846 (1995)

    Article  MathSciNet  Google Scholar 

  20. Melnikov, M.S., Verdera, J.: A geometric proof of the \(L^2\) boundedness of the Cauchy integral on Lipschitz graphs. Int. Math. Res. Not. 7, 325–331 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nazarov, F., Tolsa, X., Volberg, A.: On the uniform rectifiability of AD-regular measures with bounded Riesz transform operator: the case of codimension 1. Acta Math. 213(2), 237–321 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Prat, L.: Potential theory of signed Riesz kernels: capacity and Hausdorff measure. Int. Math. Res. Not. 19, 937–981 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Prat, L.: Null sets for the capacity associated to Riesz kernels. Ill. J. Math. 48(3), 953–963 (2004)

    MathSciNet  MATH  Google Scholar 

  24. Prat, L.: On the semiadditivity of the capacities associated with signed vector valued Riesz kernels. Trans. Am. Math. Soc. 364(11), 5673–5691 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  26. Tolsa, X.: Painlevé’s problem and the semiadditivity of analytic capacity. Acta Math. 190(1), 105–149 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tolsa, X.: Bilipschitz maps, analytic capacity, and the Cauchy integral. Ann. Math. (2) 162(3), 1243–1304 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank Joan Mateu and Xavier Tolsa for valuable conversations during the preparation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Prat.

Additional information

V. Chousionis is funded by the Academy of Finland Grant SA 267047. Also, partially supported by the ERC Advanced Grant 320501, while visiting Universitat Autònoma de Barcelona.

L. Prat is supported by grants 2009SGR-000420 (Generalitat de Catalunya) and MTM2010-15657 (Spain).

Appendix 1: Proofs of Propositions 3.1 and 3.3

Appendix 1: Proofs of Propositions 3.1 and 3.3

For simplicity we let n odd. Then for \(0<\alpha \le 1\)

$$\begin{aligned} K^i_{\alpha ,n}(x)=\frac{x_i^{n}}{|x|^{n+\alpha }}, \quad x =(x_1,\ldots ,x_d) \in {\mathbb R}^d{\setminus }\{0\}. \end{aligned}$$

Proof of Proposition 3.1

Write \(a=y-x\) and \(b=z-y\); then \(a+b=z-x\). Without loss of generality we can assume that \(|a|\le |b|\le |a+b|\). A simple computation yields

$$\begin{aligned} \begin{aligned}&p^i_{\alpha ,n}(x,y,z)\\&\quad = K^i_{\alpha ,n}(x-y)\,K^i_{\alpha ,n}(x-z) + K^i_{\alpha ,n}(y-x)\,K^i_{\alpha ,n}(y-z) + K^i_{\alpha ,n}(z-x)\,K^i_{\alpha ,n}(z-y)\\&\quad = K^i_{\alpha ,n}(-a)\,K^i_{\alpha ,n}(-a-b) + K^i_{\alpha ,n}(a)\,K^i_{\alpha ,n}(-b) + K^i_{\alpha ,n}(a+b)\,K^1_{\alpha ,n}(b)\\&\quad =K^i_{\alpha ,n}(a+b)K^i_{\alpha ,n}(a)+K^i_{\alpha ,n}(a+b)K^i_{\alpha ,n}(b)-K^i_{\alpha ,n}(a)K^i_{\alpha ,n}(b)\\&\quad =\frac{(a_i+b_i)^na_i^n|b|^{n+\alpha }+(a_i+b_i)^nb_i^n|a|^{n+\alpha }-a_i^nb_i^n|a+b|^{n+\alpha }}{|a|^{n+\alpha }|b|^{n+\alpha }|a+b|^{n+\alpha }}. \end{aligned} \end{aligned}$$
(1.32)

If \(a_ib_i=0\) the proof is immediate. Take for example \(a_i=0\). Then we trivially obtain

$$\begin{aligned} p^i_{\alpha ,n}(x,y,z)=\frac{b_i^{2n}}{|b|^{n+\alpha }|a+b|^{n+\alpha }} \approx \frac{ \ M_i^{2n}}{L(x,y,z)^{2\alpha +2n}}. \end{aligned}$$
(1.33)

To prove the upper bound inequality in (3.8) we distinguish two cases.

Case \(a_ib_i>0:\) Without loss of generality assume \(a_i> 0\) and \(b_i> 0\). In case \(a_i<0\) and \(b_i<0\),

$$\begin{aligned} \begin{aligned}&(a_i+b_i)^na_i^n|b|^{n+\alpha }+(a_i+b_i)^nb_i^n|a|^{n+\alpha }-a_i^nb_i^n|a+b|\\&\quad \quad =(|a_i|+|b_i|)^n|a_i|^n|b|^{n+\alpha }+(|a_i|+|b_i|)^n|b_i|^n|a|^{n+\alpha }-|a_i|^n|b_i|^n|a+b|^{n+\alpha } \end{aligned} \end{aligned}$$

and thus it can be reduced to the case where both coordinates are positive.

Notice that since \(|a|\le |b|\le |a+b|\), \(a_i\le |a|\) and \(0<\alpha <1\),

$$\begin{aligned} p^i_{\alpha ,n}(x,y,z)= & {} \frac{(a_i+b_i)^nb_i^n}{|b|^{n+\alpha }|a+b|^{n+\alpha }}+\frac{a_i^n\left( (a_i+b_i)^n|b|^{n+\alpha }-b_i^n|a+b|^{n+\alpha }\right) }{|a|^{n+\alpha }|b|^{n+\alpha }|a+b|^{n+\alpha }}\\&\le \frac{1}{|b|^{\alpha }|a+b|^{\alpha }}+\frac{(a_i+b_i)^n-b_i^n}{|a|^\alpha |a+b|^{n-\alpha }}\\&\le \frac{1}{|b|^{\alpha }|a+b|^{\alpha }}+\frac{a_i^\alpha }{|a|^\alpha }\frac{\sum _{k=1}^n\left( {\begin{array}{c}n\\ k\end{array}}\right) a_i^{k-\alpha }b_i^{n-k}}{|b|^{n+\alpha }}\\&\le \frac{1}{|b|^{\alpha }|a+b|^{\alpha }}+\frac{\sum _{k=1}^n\left( {\begin{array}{c}n\\ k\end{array}}\right) |a|^{k-\alpha }|b|^{n-k}}{|b|^{n+\alpha }}\\&\le \frac{1}{|b|^{\alpha }|a+b|^{\alpha }}+\frac{B(n)|b|^{n-\alpha }}{|b|^{n+\alpha }} \le \frac{B(n,\alpha )}{|a+b|^{2\alpha }}, \end{aligned}$$

where the last inequality comes from \(|a+b|\le 2|b|\), which follows from the triangle inequality and the fact that \(|a|\le |b|\).

Case \(a_i b_i <0:\) Without loss of generality we can assume that \(a_i<0\), \(b_i> 0\) and \(b_i\le |a_i|\), the other cases follow analogously by interchanging the roles of \(a_i\) and \(b_i\).

$$\begin{aligned} \begin{aligned} p^i_{\alpha ,n}(x,y,z)&= \frac{(|a_i|-b_i)^n|a_i|^n|b|^{n+\alpha }-(|a_i|-b_i)^nb_i^n|a|^{n+\alpha }+|a_i|^nb_i^n|a+b|^{n+\alpha }}{|a|^{n+\alpha }|b|^{n+\alpha }|a+b|^{n+\alpha }}\\&\le \frac{(|a_i|-b_i)^n|a_i|^n|b|^{n+\alpha }+|a_i|^nb_i^n|a+b|^{n+\alpha }}{|a|^{n+\alpha }|b|^{n+\alpha }|a+b|^{n+\alpha }}\\&\le \frac{|a|^{2n}(|b|^{n+\alpha }+|a+b|^{n+\alpha })}{|a|^{n+\alpha }|b|^{n+\alpha }|a+b|^{n+\alpha }}=|a|^{n-\alpha }\left( \frac{1}{|a+b|^{n+\alpha }}+\frac{1}{|b|^{n+\alpha }}\right) \\&\le \frac{2^{2\alpha }+1}{|a+b|^{2\alpha }}. \end{aligned} \end{aligned}$$

since \(b_1\le |a_1|\), \(0<|a_1|-b_1<|a_1|<|a|\) and \(|a|\le |b|\le |a+b|\).

We now prove the lower bound estimate in (3.8).

Case \(a_ib_i > 0:\) As explained in the proof of the upper bound inequality the proof can be reduced to the case when \(a_i>0\) and \(b_i>0\). Setting \(t=|b|/|a|\) in (1.32) and noticing that \(|a+b|/|a| \le 1+t\) we get

$$\begin{aligned} {p^i_{\alpha ,n}}(x,y,z) \ge \frac{a_i^n(a_i+b_i)^nt^{n+\alpha }-b_i^n a_i^n (1+t)^{n+\alpha }+b_i^n (a_i+b_i)^n }{|b|^{n+\alpha }|a+b|^{n+\alpha }}:=\frac{f_1(t)}{|b|^{n+\alpha }|a+b|^{n+\alpha }}. \end{aligned}$$
(1.34)

Then it readily follows that the unique zero of

$$\begin{aligned} f'_1(t)=a_i^n(n+\alpha )(t^{n+\alpha -1} (a_i+b_i)^n-b_i^n (1+t)^{n+\alpha -1}) \end{aligned}$$

is

$$\begin{aligned} t^*=\frac{1}{\left( \frac{a_i}{b_i}+1 \right) ^{\frac{n}{n+\alpha -1}}-1}>0. \end{aligned}$$

Moreover \(f_1\) attains its minimum at \(t^*\) because \(f_1'(0)=-(n+\alpha )a_i^n b_i^n\) and \(\lim _{t \rightarrow \infty } f_1'(t)=\lim _{t \rightarrow \infty } ((b_i+a_i)^n-b_i^n)t^{n+\alpha -1}=+\infty \).

We first consider the case when \(t^*>1\). Then we deduce that

$$\begin{aligned} 0<\frac{a_i}{b_i}<2^{\frac{n + \alpha -1}{n}}-1<1, \end{aligned}$$
(1.35)

the last inequality coming from \(\alpha <1\). Therefore \(a_i<b_i\). Setting \(s=a_i/b_i\) we obtain

$$\begin{aligned} f_1(t) =b_i^{2n} \left( s^n(1+s)^nt^{n+\alpha }-s^n (1+t)^{n+\alpha }+(s+1)^n\right) \end{aligned}$$

and it follows easily that

$$\begin{aligned} f_1(t^*) =b_i^{2n} (1+s)^n \left( 1-\frac{s^n}{((s+1)^{\frac{n}{n+\alpha -1}}-1)^{n+\alpha -1}} \right) . \end{aligned}$$

A direct computation shows that the function

$$\begin{aligned} g_1(s)=1-\frac{s^n}{\left( (s+1)^{\frac{n}{n+\alpha -1}}-1\right) ^{n+\alpha -1}} \end{aligned}$$

is decreasing. Then, by (1.35), \(g_1\) attains its minimum at \(s=2^{\frac{n + \alpha -1}{n}}-1\). Therefore

$$\begin{aligned} f_1(t) \ge f_1(t^*) \ge b_i^{2n} \left( 1- \left( 2^{\frac{n + \alpha -1}{n}}-1\right) ^n\right) :=b_i^{2n}A_1(n,\alpha ) \end{aligned}$$
(1.36)

and since \(\alpha <1\), \(A_1(n, \alpha ) >0.\)

We now consider the case when \(t^*\le 1\) and notice that as \(t \ge 1\) we have \(f_1(t) \ge f_1(1)\). As before for \(s=\min \{a_i, b_i\} /\max \{a_i, b_i\}\)

$$\begin{aligned} \begin{aligned} f_1(t) \ge f_1(1)&= a_i^n (a_i+b_i)^n-a_i^n b_i^n 2^{n+\alpha }+b_i^n (a_i+b_i)^n \\&=(a_i+b_i)^n (\max \{a_i,b_i\})^n \left( s^n-\left( \frac{s}{s+1} \right) ^n 2^{n+\alpha }+1 \right) \\&:=(a_i+b_i)^n (\max \{a_i,b_i\})^n g_2(s). \end{aligned} \end{aligned}$$
(1.37)

It follows easily that the only non-zero root of

$$\begin{aligned} g_2'(s)=n s^{n-1}\left( 1-\frac{2^{n+\alpha }}{(1+s)^{n+1}}\right) \end{aligned}$$

is

$$\begin{aligned} s^*= 2^{\frac{n+\alpha }{n+1}}-1. \end{aligned}$$

Since \(\alpha \in (0,1)\), then \(2^{\frac{n+\alpha -1}{n}}-1<s^*<1.\) Furthermore notice that \(g_2'(2^{\frac{n+\alpha -1}{n}}-1)<0\) and \(g_2'(1)>0\). Hence \(g_2\) attains its minimum at \(s^*\). Therefore

$$\begin{aligned} \begin{aligned} g_2(s)\ge g_2(s^*)&=\left( 2^{\frac{n+\alpha }{n+1}}-1\right) ^n \left( 1-\frac{2^{n+\alpha }}{2^{\frac{(n+\alpha )n}{n+1}}} \right) +1 \\&=1-\left( 2^{\frac{n+\alpha }{n+1}}-1\right) ^{n+1}:=A_2(n,\alpha )>0, \end{aligned} \end{aligned}$$
(1.38)

the positivity of the constant \(A_2(n,\alpha )\) coming from inequality \(\alpha <1\). Therefore (1.34) together with (1.36), (1.37) and (1.38) imply that

$$\begin{aligned} {p^i_{\alpha ,n}}(x,y,z) \ge A(n,\alpha ) \frac{M_i^{2n}}{L(x,y,z)^{2n+2a}}, \end{aligned}$$
(1.39)

for some positive constant \(A(n,\alpha )\). Hence we have finished the proof when \(a_i \, b_i > 0\).

Case \(a_i \, b_i < 0:\) Setting \(t=|b| /|a|\) and using (1.34) we get that

$$\begin{aligned} \begin{aligned} {p^i_{\alpha ,n}}(x,y,z)&=\frac{1}{|b|^{n+\alpha }|a+b|^{n+\alpha }}(a_i^n(a_i+b_i)^nt^{n+\alpha }-b_i^n a_i^n (1+t)^{n+\alpha }+b_i^n (a_i+b_i)^n ) \\&\ge \frac{1}{|b|^{n+\alpha }|a+b|^{n+\alpha }}(a_i^n(a_i+b_i)^nt^{n+\alpha }-b_i^n a_i^n t^{n+\alpha }+b_i^n (a_i+b_i)^n )\\&:= \frac{f_2(t)}{|b|^{n+\alpha }|a+b|^{n+\alpha }}. \end{aligned} \end{aligned}$$
(1.40)

Notice that \(f_2\) is an increasing function because \(a_i^2+a_ib_i>a_ib_i\) and n is odd:

$$\begin{aligned} \begin{aligned} f'_2(t)&=(n+\alpha )t^{n+\alpha -1}(a_i^n(a_i+b_i)^n-a_i^nb_i^n)=(n+\alpha )t^{n+\alpha -1}((a_i^2+a_ib_i)^n-a_i^nb_i^n) > 0. \end{aligned} \end{aligned}$$

Therefore since \(t \ge 1\) we have that

$$\begin{aligned} f_2(t) \ge f_2(1)=(a_i^n+b_i^n)(a_i+b_i)^n-b_i^n a_i^n. \end{aligned}$$

We assume that \(|b_i| \ge |a_i|\), the case where \(|b_i| <|a_i|\) can be treated in the exact same manner. We first consider the case where \(a_i>0\) and \(b_i<0\). Let

$$\begin{aligned} h(r)=(r-|b_i|)^n(r^n-|b_i|^n)+r^n|b_i|^n. \end{aligned}$$

Then

$$\begin{aligned} h'(r)=n\left( (r-|b_i|)^{n-1}(r^n-|b_i|^n)+r^{n-1}((r-|b_i|)^n+|b_i|^n)\right) . \end{aligned}$$

Notice that

$$\begin{aligned} h'(|b_i|/2)=0. \end{aligned}$$

Furthermore

$$\begin{aligned} h'(r)>0 \text{ for } |b_i|/2 <r\le |b_i|. \end{aligned}$$

To see this notice that since \(0<|b_i|-r<r\), then \((|b_i|-r)^{n-1} <r^{n-1}\).Therefore since \(r^n-|b_i|^n<0\)

$$\begin{aligned} h'(r)>n(r^{n-1}(r^n-|b_i|^n)+r^{n-1}((r-|b_i|)^n+|b_i|^n))= nr^{n-1}(r^n-(|b_i|-r)^n)>0. \end{aligned}$$

With an identical argument one sees that \(h'(r)<0\) for \(0<r \le |b_i|/2\). Hence it follows that, for \(0<r\le |b_i|\),

$$\begin{aligned} h(r) \ge h(|b_i|/2) \ge \frac{|b_i|^{2n}}{2^n}. \end{aligned}$$

Since \(a_i \in (0, |b_i|]\) we get that \(f_2(1) \ge \frac{|b_i|^{2n}}{2^n}\) and by (1.40)

$$\begin{aligned} {p^i_{\alpha ,n}}(x,y,z) \ge 2^{-n} \frac{b_i^{2n}}{|b|^{n+\alpha }|a+b|^{n+\alpha }} \ge A_3(n) \frac{M_i^{2n}}{L(x,y,z)^{2n+2\alpha }}. \end{aligned}$$
(1.41)

The case where \(a_i <0\) and \(b_i>0\) is very similar. In this case instead of the function h we consider the function \(l(r)=(r+b_i)^n(r^n+b_i^n)-r^nb_i^n\) for \(-|b_i|/2\le x <0\) and we show that in that range,

$$\begin{aligned} l(r) \ge l(-|b_i|/2) \ge b_i^{2n}/2^n. \end{aligned}$$

Therefore as \(a_i \in [-|b_i|,0)\), \(f_2(1) \ge \frac{|b_i|^{2n}}{2^n}\) and we obtain from (1.40)

$$\begin{aligned} {p^i_{\alpha ,n}}(x,y,z) \ge 2^{-n} \frac{b_i^{2n}}{|b|^{n+\alpha }|a+b|^{n+\alpha }} \ge A_3(n) \frac{M_i^{2n}}{L(x,y,z)^{2n+2\alpha }}. \end{aligned}$$
(1.42)

Therefore the proof of the lower bound follows by (1.39), (1.41) and (1.42). \(\square \)

Remark 1

Notice that in the proof of the lower bound inequality when \(a_ib_i <0\), we do not make use of the fact that \(\alpha <1\). Therefore (1.41) and (1.42) remain valid in the case where \(\alpha =1\).

Proof of Proposition 3.3

For simplicity we let \(p^i_{1,n}:=p^i_n\) for \(i=1,\ldots ,d\). Let \(a=y-x, b=z-y\) then \(a+b=z-x\) and without loss of generality we can assume that \(|a|\le |b|\le |a+b|=1\). In case \(x_i=y_i=z_i\), then trivially by (1.32), \(p^i_n(x,y,z)=0\). Hence we can assume that \(a_i \ne 0\) or \(b_i \ne 0\) and, by (1.32), for \(\alpha =1\) , assuming without loss of generality that \(b_i \ne 0\), we get

$$\begin{aligned} p^i_{n}(x,y,z)= \frac{(a_i+b_i)^n b_i^n \left( \left( \frac{a_i}{b_i} \right) ^n |b|^{n+1}+|a|^{n+1}-\frac{a_i^n}{(a_i+b_i)^n}\right) }{|a|^{n+1}|b|^{n+1}}. \end{aligned}$$
(1.43)

If the points xyz are collinear then the initial assumption \(|a|\le |b|\le |a+b|\) implies that \(|a|+|b|=|a+b|\). Furthermore \(b=\lambda a\) for some \({\lambda }\ne 0\). We provide the details in the case when \(\lambda >0\) as the remaining case is identical. We have by (1.43)

$$\begin{aligned} \begin{aligned} p^i_{n}(x,y,z)&=\frac{(a_i+\lambda a_i)^n \lambda ^n a_i^n \left( \left( \frac{1}{\lambda } \right) ^n \lambda ^{n+1} |a|^{n+1}+|a|^{n+1}-\left( \frac{1}{1+{\lambda }}\right) ^n\right) }{|a|^{n+1}|b|^{n+1}} \\&=\frac{a_i^{2n} \lambda ^n \left( \left( (1+{\lambda })|a| \right) ^{n+1}-1\right) }{|a|^{n+1}|b|^{n+1}}\\&=\frac{a_i^{2n} \lambda ^n }{|a|^{n+1}|b|^{n+1}}\left( (1+{\lambda })|a|-1\right) \sum _{j=0}^{n}((1+{\lambda })|a|)^j=0 \end{aligned} \end{aligned}$$

because \((1+{\lambda })|a|-1=|a|+|b|-1=0\).

We will now turn our attention to the case when the points xyz are not collinear. We will consider several cases.

Case \(a_ib_i>0.\) As in the proof of Proposition 3.8 we only have to consider the case when \(a_i,b_i>0\). We first consider the subcase \(0<|a|\le |b|<|a+b|=1\).

Setting \(w=a_i/b_i\) in (1.43) we get

$$\begin{aligned} p^i_{n}(x,y,z)=\frac{(a_i+b_i)^n b_i^n}{|a|^{n+1}|b|^{n+1}} f(w) \end{aligned}$$

with

$$\begin{aligned} f(w)=w^n|b|^{n+1}+|a|^{n+1}-\left( 1+\frac{1}{w}\right) ^{-n}. \end{aligned}$$

Notice that the only non-vanishing admissible root of the equation

$$\begin{aligned} f'(w)=nw^{n-1}\left( |b|^{n+1}-\left( \frac{1}{w+1}\right) ^{n+1} \right) =0 \end{aligned}$$

is \(w=|b|^{-1}-1\). Furthermore it follows easily that

$$\begin{aligned} \lim _{w\rightarrow 0^+}f(w)=|a|^{n+1}>0 \quad \text {and}\quad \lim _{w \rightarrow +\infty }f(w)=+\infty \end{aligned}$$

hence \(f:(0,\infty ) \rightarrow {\mathbb R}\) attains its minimum at \(|b|^{-1}-1\). After a direct computation we get that

$$\begin{aligned} f(|b|^{-1}-1)=|a|^{n+1}-(1-|b|)^{n+1}. \end{aligned}$$

We can now write,

$$\begin{aligned} \begin{aligned} |a|^{n+1}&-(1-|b|)^{n+1}=|a|^{n+1}\left( 1-\left( \frac{1-|b|}{|a|}\right) ^{n+1} \right) \\&=|a|^{n+1}\left( 1- \frac{1-|b|}{|a|}\right) \sum _{j=0}^n \left( \frac{1-|b|}{|a|} \right) ^j=|a|^n(|a|-1+|b|) \sum _{j=0}^n \left( \frac{1-|b|}{|a|} \right) ^j. \\ \end{aligned} \end{aligned}$$

Therefore

$$\begin{aligned} p^i_{n}(x,y,z)\ge \frac{(a_i+b_i)^n b_i^n}{|a|^{n+1}|b|^{n+1}}|a|^n (|a|-1+|b|)\sum _{j=0}^n \left( \frac{1-|b|}{|a|} \right) ^j. \end{aligned}$$
(1.44)

Recall that, by Heron’s formula, the area of the triangle determined by \(x,y,z \in {\mathbb R}^d\) is given by

$$\begin{aligned} \text {area}(T_{x,y,z})=\frac{1}{2} \sqrt{|a+b|^2|a|^2-\left( \frac{|a+b|^2+|a|^2-|b|^2}{2}\right) ^2}, \end{aligned}$$

where \(a=y-x, b=z-y\) and \(a+b=z-x\). Hence

$$\begin{aligned}&16 \, \text {area}(T_{x,y,z})^2=(2|a+b||a|-(|a+b|^2+|a|^2\\&\quad -|b|^2))(2|a+b||a|+|a+b|^2+|a|^2-|b|^2). \end{aligned}$$

Plugging this identity into Menger’s curvature formula we get

$$\begin{aligned} \begin{aligned} c^2(x,y,z)&=\frac{16 \, \text {area}(T_{x,y,z})^2}{|a|^2|b|^2|a+b|^2}\\&=\frac{(2|a+b||b|-|a+b|^2-|a|^2+|b|^2)(2|a+b||b|+|a+b|^2+|a|^2-|b|^2)}{|a|^2|b|^2|a+b|^2}\\&=\frac{(|b|^2-(|a+b|-|a|)^2)((|a|+|a+b|)^2-|b|^2)}{|a|^2|b|^2|a+b|^2}\\&=\frac{(|b|-|a+b|+|a|)(|b|+|a+b|-|a|)(|a|+|a+b|-|b|)(|b|+|a+b|+|a|)}{|a|^2|b|^2|a+b|^2} \end{aligned} \end{aligned}$$

and since we are assuming \(|a+b|=1\),

$$\begin{aligned} c^2(x,y,z)=\frac{(|b|+|a|-1)(|b|+1-|a|)(|a|+1-|b|)(|b|+1+|a|)}{|a|^2|b|^2}. \end{aligned}$$
(1.45)

By (1.44) and (1.45) we get that

$$\begin{aligned} \begin{aligned}&p^i_{n}(x,y,z)\ge \frac{(a_i+b_i)^n b_i^n}{|a|^{n+1}|b|^{n+1}}\frac{|a|^n|a|^2|b|^2}{(|b|+1-|a|)(|a|+1-|b|)(|b|+1+|a|)}\\ {}&\quad \sum _{j=0}^n \left( \frac{1-|b|}{|a|} \right) ^j c^2(x,y,z)\ge \frac{b_i^{2n}|a||b|}{|b|^n(|b|+1-|a|)(|a|+1-|b|)(|b|+1+|a|)}c^2(x,y,z), \end{aligned} \end{aligned}$$

the last inequality coming from \(a_i+b_i\ge b_i\) and the fact that the sum above is \(>\)1. Using the triangle inequality, \(1=|a+b|\le |a|+|b|\), and the fact that \(1=|a+b|\le 2|b|\), we obtain

$$\begin{aligned} p^i_{n}(x,y,z)\ge \frac{b_i^{2n}}{12|b|^n}c^2(x,y,z)\ge c(n)\frac{ b_i^{2n}}{|b|^{2n}}c^2(x,y,z). \end{aligned}$$

To complete the proof in case \(a_ib_i>0\), we are left with the situation \(|b|=|a+b|=1\). By (1.43)

$$\begin{aligned} p^i_{n}(x,y,z)=\frac{(a_i+b_i)^n b_i^n \left( \left( \frac{a_i}{b_i} \right) ^n +|a|^{n+\alpha }-\left( \frac{a_i}{a_i+b_i}\right) ^n\right) }{|a|^{n+\alpha }}\ge (a_i+b_i)^n b_i^n \ge b_i^{2n}, \end{aligned}$$

because \(\frac{a_i}{b_i}>\frac{a_i}{a_i+b_i}\) and thus \(\left( \frac{a_i}{b_i} \right) ^n>\left( \frac{a_i}{a_i+b_i}\right) ^n.\) Hence

$$\begin{aligned} p^i_{n}(x,y,z) \ge \frac{b_i^{2n}}{|b|^{2n}}|b|^{-2} \gtrsim \frac{b_i^{2n}}{|b|^{2n}} c^2(x,y,z). \end{aligned}$$

Case \(a_i b_i<0\). It follows from Remark 1 [see (1.42) with \(\alpha =1\)].

Case \(a_i \,b_i=0\). Since we have assumed that \(b\ne 0\) we have that \(a_i=0\) and by (1.33), with \(\alpha =1\), we are done.

Therefore we have shown that whenever xyz are not collinear and they do not lie in the hyperplane \(x_i=y_i=z_i\), then \(p^i_{n}(x,y,z)>0\). This finishes the proof of (i). Furthermore, we have shown that if this is the case, then

$$\begin{aligned} p^i_{n}(x,y,z) \ge C(n) \frac{ b_i^{2n}}{|b|^{2n}}c^2(x,y,z). \end{aligned}$$
(1.46)

For the proof of (ii) notice that since \({\measuredangle }(V_j, L_{y,z}) \ge \theta _0\) there exists some coordinate \(i_0 \ne j\) such that

$$\begin{aligned} |b_{i_0}|=|y_{i_0}-z_{i_0}|\ge C(\theta _0)|y-z|=C(\theta _0)|b|, \end{aligned}$$

hence (ii) follows by (1.46). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chousionis, V., Prat, L. Some Calderón–Zygmund kernels and their relations to Wolff capacities and rectifiability. Math. Z. 282, 435–460 (2016). https://doi.org/10.1007/s00209-015-1547-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-015-1547-z

Keywords

Navigation