Skip to main content
Log in

Finite group actions on 4-manifolds with nonzero Euler characteristic

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We prove that if X is a compact, oriented, connected 4-dimensional smooth manifold, possibly with boundary, satisfying \(\chi (X)\ne 0\), then there exists a natural number C such that any finite group G acting smoothly and effectively on X has an abelian subgroup A generated by two elements which satisfies \([G:A]\le C\) and \(\chi (X^A)=\chi (X)\). Furthermore, if \(\chi (X)<0\) then A is cyclic. This answers positively, for any such X, a question of Étienne Ghys. We also prove an analogous result for manifolds of arbitrary dimension and non-vanishing Euler characteristic, but restricted to pseudofree actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. I thank A. Jaikin and E. Khukhro for explaining this argument to me.

  2. However, for some restricted classes of groups acting on X one can study in detail the topology of the singular set; in the case of minimal non-abelian groups, this is done in [15, 16], and it is the crucial ingredient of the proofs.

  3. See [10, §1.4] for the definition of neat submanifold.

References

  1. Borel, A.: Seminar on Transformation Groups, Annals of Mathematics Studies, vol. 46. Princeton University Press, Princeton (1960)

    Google Scholar 

  2. Bredon, G.E.: Introduction to Compact Transformation Groups, Pure and Applied Mathematics, vol. 46. Academic Press, New York (1972)

    Google Scholar 

  3. Csikós, B., Pyber, L., Szabó, E.: Diffeomorphism groups of compact 4-manifolds are not always Jordan. Preprint. arXiv:1411.7524

  4. Curtis, C.W., Reiner, I.: Representation Theory of Finite Groups and Associative Algebras. AMS Chelsea Publishing, Providence (2006) (Reprint of the 1962 original.)

  5. Farkas, H.M., Kra, I.: Riemann Surfaces, Graduate Texts in Mathematics, vol. 71. Springer, New York (1980)

    Book  Google Scholar 

  6. Fisher, D.: Groups Acting on Manifolds: Around the Zimmer Program, Geometry, Rigidity, and Group Actions, pp. 72–157. Chicago Lectures in Mathematics University of Chicago Press, Chicago (2011). arXiv:0809.4849

  7. Ghys, É.: The following talks: Groups of diffeomorphisms, Colóquio brasileiro de matemáticas, Rio de Janeiro (Brasil), July 1997; The structure of groups acting on manifolds, Annual meeting of the Royal Mathematical Society, Southampton (UK), March 1999; Some open problems concerning group actions, Groups acting on low dimensional manifolds, Les Diablerets (Switzerland), March 2002; Some open problems in foliation theory, Foliations 2006, Tokyo (Japan), September 2006

  8. Guralnick, R.M.: On the number of generators of a finite group. Arch. Math. (Basel) 53, 521–523 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hambleton, I., Lee, R.: Finite group actions on \({{\mathbb{P}}}_2({{\mathbb{C}}})\). J. Algebra 116(1), 227–242 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hirsch, M.W.: Differential Topology, Graduate Texts in Mathematics. Springer, New York (1976)

    Google Scholar 

  11. Illman, S.: Smooth equivariant triangulations of G-manifolds for G a finite group. Math. Ann. 233, 199–220 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jordan, C.: Mémoire sur les équations différentielles linéaires à intégrale algébrique. J. Reine Angew. Math. 84, 89–215 (1878)

    Article  Google Scholar 

  13. Lucchini, A.: A bound on the number of generators of a finite group. Arch. Math. (Basel) 53, 313–317 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mann, L.N., Su, J.C.: Actions of elementary \(p\)-groups on manifolds. Trans. Am. Math. Soc. 106, 115–126 (1963)

    MathSciNet  MATH  Google Scholar 

  15. McCooey, M.P.: Symmetry groups of four-manifolds. Topology 41, 835–851 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. McCooey, M.P.: Symmetry groups of non-simply-connected four-manifolds. Preprint. arXiv:0707.3834

  17. Mecchia, M., Zimmermann, B.: On finite simple and nonsolvable groups acting on closed 4-manifolds. Pac. J. Math. 243(2), 357–374 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mecchia, M., Zimmermann, B.: On finite groups acting on homology 4-spheres and finite subgroups of \(\text{ SO }(5)\). Topol. Appl. 158(6), 741–747 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Minkowski, H.: Zur Theorie der positiven quadratischen Formen. J. Reine Angew. Math. 101, 196–202 (1887) (See also collected works. I, 212–218, Chelsea Publishing Company, 1967.)

  20. Mundet i Riera, I.: Jordan’s theorem for the diffeomorphism group of some manifolds. Proc. Am. Math. Soc. 138, 2253–2262 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mundet i Riera, I.: Finite group actions on homology spheres and manifolds with nonzero Euler characteristic. Preprint. arXiv:1403.0383v3

  22. Mundet i Riera, I.: Finite group actions on 4-manifolds with nonzero Euler characteristic. Preprint. arXiv:1312.3149v2

  23. Mundet i Riera, I., Turull, A.: Boosting an analogue of Jordan’s theorem for finite groups. Adv. Math. 272, 820–836 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Popov, V.L.: On the Makar-Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties. In: Peter Russells Festschrift, Proceedings of the Conference on Affine Algebraic Geometry Held in Professor Russells Honour, 15 June 2009, McGill University, Montreal, Volume 54 of Centre de Recherches Mathématiques CRM Proceedings and Lecture Notes, pp. 289-311 (2011)

  25. Popov, V.L.: Finite subgroups of diffeomorphism groups. Preprint. arXiv:1310.6548

  26. Roseblade, J.E.: On groups in which every subgroup is subnormal. J. Algebra 2, 402–412 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  27. Serre, J.-P.: Bounds for the Orders of the Finite Subgroups of \(G(k)\), Group Representation Theory. EPFL Press, Lausanne (2007)

    Google Scholar 

  28. tom Dieck, T.: Transformation Groups, de Gruyter Studies in Mathematics, vol. 8. Walter de Gruyter & Co., Berlin (1987)

    Book  Google Scholar 

  29. Wilczyński, D.: Group actions on the complex projective plane. Trans. Am. Math. Soc. 303(2), 707–731 (1987)

    Article  MATH  Google Scholar 

  30. Zimmermann, B.: On Jordan type bounds for finite groups acting on compact \(3\)-manifolds. Arch. Math. 103, 195–200 (2014)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignasi Mundet i Riera.

Additional information

This work has been partially supported by the (Spanish) MEC Project MTM2012-38122-C03-02.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mundet i Riera, I. Finite group actions on 4-manifolds with nonzero Euler characteristic. Math. Z. 282, 25–42 (2016). https://doi.org/10.1007/s00209-015-1530-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-015-1530-8

Mathematics Subject Classification

Navigation