Skip to main content
Log in

Some properties of the group of birational maps generated by the automorphisms of \({\mathbb {P}}^n_{\mathbb {C}}\) and the standard involution

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We give some properties of the subgroup \(G_n({\mathbb {C}})\) of the group of birational self-maps of \({\mathbb {P}}^n_{\mathbb {C}}\) generated by the standard involution and the group of automorphisms of \({\mathbb {P}}^n_{\mathbb {C}}\). We prove that there is no nontrivial finite-dimensional linear representation of \(G_n({\mathbb {C}})\). We also establish that \(G_n({\mathbb {C}})\) is perfect, and that \(G_n({\mathbb {C}})\) equipped with the Zariski topology is simple. Furthermore if \(\upvarphi \) is an automorphism of \({{\mathrm {Bir}}}({\mathbb {P}}^n_{\mathbb {C}})\), then up to birational conjugacy, and up to the action of a field automorphism \({\upvarphi }_{\vert G_n({\mathbb {C}})}\) is trivial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberich-Carramiñana, M.: Geometry of the Plane Cremona Maps. Volume of 1769 Lecture Notes in Mathematics. Springer, Berlin (2002)

  2. Birkhoff, G.: Lie groups simply isomorphic with no linear group. Bull. Am. Math. Soc. 42(12), 883–888 (1936)

    Article  MathSciNet  Google Scholar 

  3. Blanc, J.: Linearisation of finite abelian subgroups of the Cremona group of the plane. Groups Geom. Dyn. 3(2), 215–266 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Blanc, J.: Sous-groupes algébriques du groupe de Cremona. Transform. Groups 14(2), 249–285 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Blanc, J.: Groupes de Cremona, connexité et simplicité. Ann. Sci. Éc. Norm. Supér. (4) 43(2), 357–364 (2010)

    MATH  MathSciNet  Google Scholar 

  6. Blanc, J.: Simple relations in the Cremona group. Proc. Am. Math. Soc. 140(5), 1495–1500 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Blanc, J., Déserti, J.: Degree growth of birational maps of the plane. Ann. Sc. Norm. Super. Pisa Cl. Sci. 14(5), 507–533 (2015)

  8. Blanc, J., Hedén, I.: The group of Cremona transformations generated by linear maps and the standard involution. arXiv:1405.2746 (2014)

  9. Bogomolov, F., Prokhorov, Y.: On stable conjugacy of finite subgroups of the plane Cremona group. I. Cent. Eur. J. Math. 11(12), 2099–2105 (2013)

    MATH  MathSciNet  Google Scholar 

  10. Cantat, S.: Sur les groupes de transformations birationnelles des surfaces. Ann. Math. (2) 174(1), 299–340 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cantat, S.: Morphisms between Cremona groups and a characterization of rational varieties. Compos. Math. (to appear)

  12. Cantat, S., Lamy, S.: Normal subgroups in the Cremona group. Acta Math. 210(1), 31–94 (2013). (With an appendix by Yves de Cornulier)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cerveau, D., Déserti, J.: Centralisateurs dans le groupe de Jonquières. Mich. Math. J. 61(4), 763–783 (2012)

    Article  MATH  Google Scholar 

  14. Cerveau, D., Déserti, J.: Transformations birationnelles de petit degré. Volume 19 of Cours Spécialisés. Société Mathématique de France, Paris (2013)

  15. Coble, A.B.: Point sets and allied Cremona groups. II. Trans. Am. Math. Soc. 17(3), 345–385 (1916)

    MathSciNet  Google Scholar 

  16. Cornulier, Y.: Nonlinearity of some subgroups of the planar Cremona group. Unpublished manuscript http://www.normalesup.org/~cornulier/crelin.pdf (2013)

  17. de la Harpe, P.: Topics in Geometric Group Theory. Chicago Lectures in Mathematics. University of Chicago Press, Chicago (2000)

    Google Scholar 

  18. Demazure, M.: Sous-groupes algébriques de rang maximum du groupe de Cremona. Ann. Sci. École Norm. Sup. 4(3), 507–588 (1970)

    MathSciNet  Google Scholar 

  19. Déserti, J.: Groupe de Cremona et dynamique complexe: une approche de la conjecture de Zimmer. Int. Math. Res. Not. Art. ID 71701, 27 (2006)

  20. Déserti, J.: Sur le groupe des automorphismes polynomiaux du plan affine. J. Algebra 297(2), 584–599 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Déserti, J.: Sur les automorphismes du groupe de Cremona. Compos. Math. 142(6), 1459–1478 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Déserti, J.: Le groupe de Cremona est hopfien. C. R. Math. Acad. Sci. Paris 344(3), 153–156 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Déserti, J.: Sur les sous-groupes nilpotents du groupe de Cremona. Bull. Braz. Math. Soc. (N.S.) 38(3), 377–388 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Déserti, J., Han, F.: On cubic birational maps of \({\mathbb{P}}_{\mathbb{C}}^3\). arXiv:1311.1891 (2013)

  25. Dieudonné, J.: La géométrie des groupes classiques. Ergebnisse der Mathematik und ihrer Grenzgebiete (N.F.), Heft 5. Springer, Berlin (1955)

  26. Diller, J., Favre, C.: Dynamics of bimeromorphic maps of surfaces. Am. J. Math. 123(6), 1135–1169 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Dolgachev, I.V., Iskovskikh, V.A.: Finite subgroups of the plane Cremona group. In: Algebra, Arithmetic, and Geometry: In Honor of Yu. I. Manin. Vol. I, volume 269 of Progr. Math., pp. 443–548. Birkhäuser Boston Inc., Boston (2009)

  28. Frumkin,M.A.: A filtration in the three-dimensional Cremona group. Mat. Sb. (N.S.), 90(132):196–213, 325 (1973)

  29. Hudson, H.P.: Cremona Transformations in Plane and Space. Cambridge University Press, Cambridge (1927)

    MATH  Google Scholar 

  30. Jung, H.W.E.: Über ganze birationale Transformationen der Ebene. J. Reine Angew. Math. 184, 161–174 (1942)

    MathSciNet  Google Scholar 

  31. Kraft, H., Stampfli, I.: On automorphisms of the affine cremona group. Ann. Inst. Fourier (Grenoble) 63(3), 1535–1543 (2013)

    Article  MathSciNet  Google Scholar 

  32. Lamy, S.: On the genus of birational maps between 3-folds arXiv:1305.2482 (2013)

  33. Mundet i Riera, I.: Finite group actions on homology spheres and manifolds with nonzero Euler characteristic. arXiv:1403.0383 (2014)

  34. Pan, I.: Sur les transformations de Cremona de bidegré \((3,3)\). Enseign. Math. (2) 43(3–4), 285–297 (1997)

    MATH  MathSciNet  Google Scholar 

  35. Pan, I.: Une remarque sur la génération du groupe de Cremona. Bol. Soc. Brasil. Mat. (N.S.) 30(1), 95–98 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  36. Pan, I., Ronga, F., Vust, T.: Transformations birationnelles quadratiques de l’espace projectif complexe à trois dimensions. Ann. Inst. Fourier (Grenoble) 51(5), 1153–1187 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  37. Pan, I., Simis, A.: Cremona maps. arXiv:1403.1197 (2014)

  38. Popov, V.L.: Some subgroups of the Cremona groups. In: Affine Algebraic Geometry, pp. 213–242. World Scientific Publishing, Hackensack (2013)

  39. Popov, V.L.: Tori in the Cremona groups. Izv. Ross. Akad. Nauk Ser. Mat. 77(4), 103–134 (2013)

    Article  MathSciNet  Google Scholar 

  40. Popov, V.L.: Jordan groups and automorphism groups of algebraic varieties. In: Automorphisms in Birational and Affine Geometry, vol. 79, pp. 185–213. Springer Proceedings in Mathematics & Statistics (2014)

  41. Prokhorov, Y.: \(p\)-Elementary subgroups of the Cremona group of rank 3. In: Classification of Algebraic Varieties, EMS Ser. Congr. Rep., pp. 327–338. Eur. Math. Soc., Zürich (2011)

  42. Prokhorov, Y.: Simple finite subgroups of the Cremona group of rank 3. J. Algebr. Geom. 21(3), 563–600 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  43. Prokhorov, Y.G.: On birational involutions of \({{\mathbb{P}}}^3\). Izv. Ross. Akad. Nauk Ser. Mat. 77(3), 199–222 (2013)

    Article  MathSciNet  Google Scholar 

  44. Šafarevič, I.R., Averbuh, B.G., Vaĭnberg, J.R., Žižčenko, A.B., Manin, Ju I., Moĭšezon, B.G., Tjurina, G.N., Tjurin, A.N.: Algebraic surfaces. Trudy Mat. Inst. Steklov. 75, 1–215 (1965)

    MathSciNet  Google Scholar 

  45. Serre, J.-P.: Le groupe de Cremona et ses sous-groupes finis. Astérisque, (332):Exp. No. 1000, vii, 75–100. Séminaire Bourbaki. Volume 2008/2009. Exposés 997–1011 (2010)

  46. Shestakov, I.P., Umirbaev, U.U.: The tame and the wild automorphisms of polynomial rings in three variables. J. Am. Math. Soc. 17(1), 197–227 (2004). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  47. Umemura, H.: Sur les sous-groupes algébriques primitifs du groupe de Cremona à trois variables. Nagoya Math. J. 79, 47–67 (1980)

    MATH  MathSciNet  Google Scholar 

  48. Umemura, H.: Maximal algebraic subgroups of the Cremona group of three variables. Imprimitive algebraic subgroups of exceptional type. Nagoya Math. J. 87, 59–78 (1982)

    MATH  MathSciNet  Google Scholar 

  49. Umemura, H.: On the maximal connected algebraic subgroups of the Cremona group. I. Nagoya Math. J. 88, 213–246 (1982)

    MATH  MathSciNet  Google Scholar 

  50. van den Essen, A.: Polynomial automorphisms and the Jacobian conjecture, volume 190 of Progress in Mathematics. Birkhäuser, Basel (2000)

  51. Vinberg, È.B.: Algebraic transformation groups of maximal rank. Mat. Sb. (N.S.) 88(130), 493–503 (1972)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

I would like to thank D. Cerveau for his helpful and continuous listening. Thanks to the referee that helps me to improve the exposition. Thanks to I. Dolgachev for pointing out me that Coble introduced the group \(G_n({\mathbb {C}})\) in [15], and to J. Blanc, J. Diller, F. Han, M. Jonsson, J.-L. Lin for their remarks and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Déserti.

Additional information

The author is supported by ANR Grant “BirPol” ANR-11-JS01-004-01.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Déserti, J. Some properties of the group of birational maps generated by the automorphisms of \({\mathbb {P}}^n_{\mathbb {C}}\) and the standard involution. Math. Z. 281, 893–905 (2015). https://doi.org/10.1007/s00209-015-1512-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-015-1512-x

Mathematics Subject Classification

Navigation