Skip to main content
Log in

On the Tannaka group attached to the Theta divisor of a generic principally polarized abelian variety

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

To any closed subvariety Y of a complex abelian variety one can attach a reductive algebraic group G which is determined by the decomposition of the convolution powers of Y via a certain Tannakian formalism. For a theta divisor Y on a principally polarized abelian variety, this group G provides a new invariant that naturally endows the moduli space \({{\mathcal {A}}}_g\) of principally polarized abelian varieties of dimension g with a finite constructible stratification. We determine G for a generic principally polarized abelian variety, and for \(g=4\) we show that the stratification detects the locus of Jacobian varieties inside the moduli space of abelian varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreev, E.M., Vinberg, E.B., Elashvili, A.G.: Orbits of greatest dimension in semi-simple linear Lie groups. Funct. Anal. Appl. 1, 257–261 (1967)

    Article  Google Scholar 

  2. Andreotti, A., Mayer, A.L.: On period relations for abelian integrals on algebraic curves. Ann. Sc. Norm. Super. Pisa Cl. Sci. 21, 189–238 (1967)

    MATH  MathSciNet  Google Scholar 

  3. Beauville, A.: Prym varieties and the Schottky problem. Invent. Math. 41, 149–196 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  4. Beauville, A.: Le problème de Schottky et la conjecture de Novikov. Sem. Bourbaki 29, 101–112 (1986–1987)

  5. Beilinson, A., Bernstein, J.: A proof of Jantzen conjectures. Adv. Soviet Math. 16, 1–50 (1993)

    MathSciNet  Google Scholar 

  6. Beilinson, A., Bernstein, J., Deligne, P.: Faisceaux pervers. Astérisque 100 (1982)

  7. Casalaina-Martin, S.: Singularities of theta divisors in algebraic geometry. In: Curves and Abelian Varieties, Contemp. Math., vol. 465, pp. 25–43 (2008)

  8. Debarre, O.: Sur la démonstration de A. Weil du théorème de Torelli pour les courbes. Compos. Math. 58, 3–11 (1986)

    MATH  MathSciNet  Google Scholar 

  9. Debarre, O.: Le lieu des variétés abéliennes dont le diviseur thêta est singulier a deux composantes. Ann. Sci. Éc. Norm. Supér. 25, 687–708 (1992)

    MATH  MathSciNet  Google Scholar 

  10. Debarre, O.: The Schottky problem—an update. In: Current Topics in Complex Algebraic Geometry, Math. Sci. Res. Inst. Publ., vol. 28, pp. 57–64 (1995)

  11. Deligne, P.: La conjecture de Weil II. Publ. Math. Inst. Hautes Études Sci. 52, 137–252 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  12. Deligne, P.: Hodge cycles on abelian varieties. In: Hodge Cycles, Motives and Shimura varieties, Lecture Notes in Math, vol. 900, pp. 9–100. Springer , Berlin (1982)

  13. Deligne, P., Katz, N. (eds.): Séminaire de géométrie algébrique du Bois Marie 1967-1969. Groupes de monodromie en géométrie algebrique (SGA7), Lecture Notes in Math., vols. 288 and 340. Springer, Berlin (1972–1973)

  14. Ein, L., Lazarsfeld, R.: Singularities of theta divisors and the birational geometry of irregular varieties. J. AMS 10, 243–258 (1997)

    MATH  MathSciNet  Google Scholar 

  15. Faltings, G., Chai, C.-L.: Degenerations of abelian varieties, Ergeb. Math. Grenzgeb. (3. Folge), vol. 22. Springer (1990)

  16. Goodman, R., Wallach, N.R.: Symmetry, representations and invariants. Grad. Texts in Math., vol. 255. Springer (2009)

  17. Grushevsky, S.: The Schottky problem. Curr. Dev. Algebr. Geom. 59, 129–164 (2012)

    MathSciNet  Google Scholar 

  18. Grushevsky, S., Hulek, K.: Geometry of theta divisors—a survey. In: A Celebration of Algebraic Geometry, Clay Mathematics Proceedings, vol. 18, AMS, pp. 361–390 (2013)

  19. Grushevsky, S., Salvati Manni, R.: Singularities of the theta divisor at points of order two. Int. Math. Res. Not. (2007). doi:10.1093/imrn/rnm045

  20. Hotta, R., Takeuchi, K., Tanisaki, T.: D-Modules, Perverse Sheaves and Representation Theory, Progress in Math., vol. 236. Birkhäuser (2008)

  21. Igusa, J.: Theta functions, Grundlehren Math. Wiss., vol. 194. Springer (1972)

  22. Illusie, L.: Autour du théorème de monodromie locale. Astérisque 223, 9–57 (1994)

    MathSciNet  Google Scholar 

  23. Katz, N.M., Laumon, G.: Transformation de Fourier et majoration de sommes exponentielles. Publ. Math. Inst. Hautes Études Sci. 62, 145–202 (1985)

    Article  MATH  Google Scholar 

  24. Kiehl, E., Weissauer, R.: Weil Conjectures, Perverse Sheaves and l-adic Fourier Transform, Ergeb. Math. Grenzgeb. (3. Folge), vol. 42. Springer (2000)

  25. Krämer, T.: Tannakian categories of perverse sheaves on abelian varieties. Dissertation, Universität Heidelberg (2013). www.ub.uni-heidelberg.de/archiv/15066

  26. Krämer, T., Weissauer, R.: The symmetric square of the theta divisor in genus\(4\), preprint available at: arXiv:1109.2249

  27. Krämer, T., Weissauer, R.: Vanishing theorems for constructible sheaves on abelian varieties. J. Algebr. Geom. (to appear). Preprint available at: arXiv:1111.4947

  28. Mumford, D.: Geometric Invariant Theory (3rd ed.), Ergeb. Math. Grenzgeb., vol. 34. Springer (1994)

  29. Schnell, C.: Holonomic \({\cal D}\)-modules on abelian varieties. Publ. Math. Inst. Hautes Études Sci. (to appear), see also: arXiv:1307.1937

  30. Smith, R., Varley, R.: Components of the locus of singular theta divisors of genus 5. In: Algebraic Geometry Sitges (Barcelona), Lecture Notes in Math., vol. 1124, pp. 338–416. Springer (1985)

  31. Reich, R.: Notes on Beilinson’s “How to glue perverse sheaves”. J. Singul. 1, 94–115 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  32. Springer, T.A.: Linear algebraic groups (2nd ed.), Progress in Math., vol. 9. Birkhäuser (1998)

  33. Weil, A.: Zum Beweis des Torellischen Satzes. Nachr. Akad. Wiss. Göttingen, Math. Phys. Klass 2, 33–53 (1957)

    MathSciNet  Google Scholar 

  34. Weissauer, R.: Brill-Noether sheaves. Preprint available at: arXiv:math/0610923

  35. Weissauer, R.: Why certain Tannaka groups attached to abelian varieties are almost connected, preprint available at: arXiv:1207.4039

  36. Weissauer, R.: A remark on rigidity of BN-sheaves. preprint available at: arXiv:1111.6095

  37. Weissauer, R.: Degenerate perverse sheaves on abelian varieties. Preprint available at: arXiv:1204.2247

  38. Weissauer, R.: Tannakian categories attached to abelian varieties. In: Edixhoven, B., van der Geer, G. Moonen, B. (eds.), Modular Forms on Schiermonnikoog. Cambridge University Press, pp. 267–274 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Weissauer.

Appendix: Constructibility

Appendix: Constructibility

In this appendix we study how the Tannaka groups from [27] vary in families of perverse sheaves. We work in an algebraic setting, so as above we put \(\Lambda = \overline{\mathbb {Q}}_l\) for some prime l and write \({\mathbf {P}}(-)=\mathrm {Perv}(-, \Lambda )\) and \({\mathbf {D}}(-)={{D^{b}_{c} }}(-, \Lambda )\).

Let S be an algebraic variety over an algebraically closed field k of characteristic zero, and let \({\mathcal {X}}\rightarrow S\) be an abelian scheme over S. If \({\mathcal {Y}}\hookrightarrow {\mathcal {X}}\) is a closed subvariety that maps surjectively onto S, we can consider for any geometric point \(\overline{s}\) in S the perverse intersection cohomology sheaf \(\delta _{\, Y_{\overline{s}}} \in {\mathbf {P}}(X_{\overline{s}})\) on the fibre \(Y_{\overline{s}} \hookrightarrow X_{\overline{s}}\). The following example illustrates that the corresponding Tannaka groups in general do not depend on \(\overline{s}\) in a constructible way.

Example 7.1

If \(S=E\) is an elliptic curve and \({\mathcal {X}}=E\times S \rightarrow S\) is the constant family, then for the diagonal \({\mathcal {Y}}= \{ (e,e) \mid e\in E\}\) we have

$$\begin{aligned} G(\delta _{\, Y_{\overline{s}}}) \; \cong \; {\left\{ \begin{array}{ll} {\mathbb {Z}}/n{\mathbb {Z}}&{} \hbox { if } \overline{s}\hbox { is a torsion point in } E \hbox { of precise order } n, \\ {\mathbb {G}}_m &{} \hbox { if } \overline{s}\hbox { is a point of infinite order in } E. \end{array}\right. } \end{aligned}$$

In general we only have the following semicontinuity property.

Lemma 7.2

Let \({\mathcal {Y}}\hookrightarrow {\mathcal {X}}\) be a closed subvariety which is smooth over S. Let \(\eta \in S\) be a scheme-theoretic point, \(s \in \overline{\{ \eta \}}\) a point in its closure, and choose geometric points \( \bar{\eta }\) and \(\overline{s}\) above them. Then we have an embedding

$$\begin{aligned} G(\delta _{\, Y_{\overline{s}}}) \hookrightarrow G(\delta _{\, Y_{ \bar{\eta }}}). \end{aligned}$$

Proof

After base change to the reduced closed subscheme \(\overline{\{ \eta \}} \hookrightarrow S\) we can assume that \(\eta \) is the generic point of S. One then easily reduces our claim to the local situation of [27, lemma 14.1], and for the nearby cycles we have \(\Psi (\delta _{Y_{ \bar{\eta }}}) = \delta _{Y_{\overline{s}}}\) because by assumption the morphism \({\mathcal {Y}}\rightarrow S\) is smooth. \(\square \)

To get a constructibility statement for the stratifications defined by the Tannaka groups, we need to impose some finiteness conditions. To simplify the notation, let us temporarily assume that \({\mathcal {X}}=X\) is an abelian variety over \(S= Spec (k)\). For every \(P\in {\mathbf {P}}(X)\) we have a fibre functor

$$\begin{aligned} \omega : \langle P \rangle \; \mathop {\longrightarrow }\limits ^{\sim } \; { Rep }_\Lambda (G(P)). \end{aligned}$$

Like any character of the Tannaka group, the determinant character \(\det (\omega (P))\) corresponds by [27, prop. 10.1] to a skyscraper sheaf \(\delta _{x} \in \langle P \rangle \) supported on some point \(x \in X(k)\). By abuse of notation, in what follows we write \(\det (P)^n={\mathbf {1}}\) to indicate that the determinant character has order dividing n, or equivalently that the above point x is an n-torsion point. In many applications the perverse sheaf P will be isomorphic to its adjoint dual \(P^\vee \) and then \(\det (P)^2 = {\mathbf {1}}\); by Remark 1.1(c) this in particular holds if \(P=\delta _Y\) is the perverse intersection cohomology sheaf supported on a symmetric closed subvariety \(Y\hookrightarrow X\).

Lemma 7.3

For any fixed \(d, n\in {\mathbb {N}}\), the general linear group \( Gl _d(\Lambda )\) admits only finitely many conjugacy classes of subgroups isomorphic to Tannaka groups G(P) of simple perverse sheaves \(P\in {\mathbf {P}}(X)\) with \(\chi (P)=d\) and \(\det (P)^n={\mathbf {1}}\).

Proof

Let \(G=G(P)\) be the Tannaka group of a simple perverse sheaf P as in the lemma, and denote by \(H=G^0\) the connected component of this Tannaka group. By [35] there exists a finite subgroup \(K\subset X\) of torsion points on X such that we have

$$\begin{aligned} H\;=\; G\bigl (Rf_*(P) \bigr ) \quad \hbox {for the isogeny} \quad f: \; X \; \rightarrow \; X/K, \end{aligned}$$

and the group of connected components \(\pi = G/H\) is a finite abelian group whose characters correspond to the rank one skyscraper sheaves supported in the points of \(K({\mathbb {C}})\). The restriction and induction functors for the subgroup \(H\hookrightarrow G\) are given by the direct and inverse image:

and looking at the restriction of the induction of a character \(\chi : H \rightarrow \Lambda ^*\) one sees that the adjoint action of G fixes any such character. In other words, the adjoint action of G induces the trivial action on the abelianization \(H^{ab} = H/[H, H]\). So we may apply the following general fact:

Let V be a finite-dimensional vector space over \(\Lambda \). Then for any fixed \(n\in {\mathbb {N}}\), there exist only finitely many conjugacy classes of subgroups \(G\hookrightarrow Gl (V)\) with the property that

  1. (1)

    the restriction \(V|_G\) is irreducible,

  2. (2)

    the quotient \(\pi = G/H\) by \(H=G^0\) is a finite abelian group,

  3. (3)

    the adjoint action of \(\pi \) on \(H^{ab} = H/[H, H]\) is trivial,

  4. (4)

    the determinant \(\det (V|_G)\) is a character of order at most n.

For the proof of this general fact one may fix the subgroup \(H\hookrightarrow Gl (V)\) since the group \( Gl (V)\) contains only finitely many connected reductive subgroups up to conjugation. Using Mackey theory and the classification of non-connected reductive groups, one then shows that there are only finitely many subgroups \(G\hookrightarrow Gl (V)\) with given connected component \(G^0 = H\) such that (1)–(4) hold; for details we refer to [25, appendix B]. \(\square \)

Let us now return to an abelian scheme \(p: {\mathcal {X}}\rightarrow S\) whose base scheme is any variety S over k. For \(K\in {\mathbf {D}}(X)\) and geometric points \(\overline{s}\) of S we write \(K_{\overline{s}} = i_{\overline{s}}^* (K)\) for the pull-back to the geometric fibre \(i_{\overline{s}}: X_{\overline{s}} \rightarrow {\mathcal {X}}\).

Proposition 7.4

Let \(n\in {\mathbb {N}}\) and \(P\in {\mathbf {D}}({\mathcal {X}})\) be such that for any geometric point \(\overline{s}\) the pull-back \(P_{\overline{s}}\) is a simple perverse sheaf with \(\det (P_{\overline{s}})^n = {\mathbf {1}}\). Then there are reductive algebraic groups \(G_1, \dots , G_m\) and an algebraic stratification into locally closed subsets

$$\begin{aligned} S \;=\; \bigsqcup _{i=0}^m \; S_i \;\;\; \hbox { such that} \;\;\; G(P_{\overline{s}}) \;\cong \; G_i \;\;\; \hbox { for all geometric points } \overline{s}\hbox { in } S_i. \end{aligned}$$

Proof

If V is a finite-dimensional vector space over \(\Lambda \), then every reductive algebraic subgroup of \( Gl _\Lambda (V)\) is determined uniquely by its invariants in the tensor powers \(W^{\otimes r}\) of the representation \(W=V\oplus V^\vee \) [12, prop. 3.1(c)]. Furthermore, if we only want to distinguish between finitely many given reductive subgroups up to conjugacy, then it suffices to consider only finitely many exponents \(r \in {\mathbb {N}}\).

In our case it follows via Lemma 7.3 that the group \(G(P_{\overline{s}})\) is determined by the collection of all direct summands \(\delta _0\) inside the convolution powers \((P_{\overline{s}} \oplus (P_{\overline{s}})^\vee )^{*r}\) for finitely many r. To show that these direct summands depend on the geometric point \(\overline{s}\) in a constructible way, we may replace S by an open dense subset and then proceed by induction on \(\dim (S)\). So we may assume that there exists \(K \in {\mathbf {D}}({\mathcal {X}})\) such that

$$\begin{aligned} K_{\overline{s}} \;\cong \; P_{\overline{s}} \oplus (P_{\overline{s}})^\vee \quad \hbox {for all geometric points } \overline{s}\hbox { in } S. \end{aligned}$$

Here we use the general fact [23, prop. 1.1.7] that for any morphism \(p: {\mathcal {X}}\rightarrow S\) with smooth target S and any constructible complex \(P\in {\mathbf {D}}({\mathcal {X}})\), there is an open dense subset of S such that the formation of the relative Verdier dual \({R\mathcal {H}om}(P, p^{!}\Lambda _S)\) commutes with any base change that factors over this open subset. Now consider the relative convolution powers

$$\begin{aligned} K(r) \;=\; Ra_{r,*}(K\boxtimes \cdots \boxtimes K) \end{aligned}$$

defined by the r-fold addition morphism \(a_r: {\mathcal {X}}\times _S \cdots \times _S {\mathcal {X}}\rightarrow {\mathcal {X}}\) of our abelian scheme. These relative convolution powers are constructible sheaf complexes, hence in particular the dimension \(\dim _\Lambda { Hom }(\delta _0, K(r)_{\overline{s}})\) is a constructible function of the geometric point \(\overline{s}\) in S. The isomorphism

$$\begin{aligned} (K(r))_{\overline{s}} \;\cong \; (P_{\overline{s}} \oplus (P_{\overline{s}})^\vee )^{*r} \end{aligned}$$

and the remarks from the beginning of the proof thus imply that the isomorphism class of the group \(G(P_{\overline{s}})\) is a constructible function of the point \(\overline{s}\) in S. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krämer, T., Weissauer, R. On the Tannaka group attached to the Theta divisor of a generic principally polarized abelian variety. Math. Z. 281, 723–745 (2015). https://doi.org/10.1007/s00209-015-1505-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-015-1505-9

Keywords

Mathematics Subject Classification

Navigation