Skip to main content
Log in

A classification of minimal sets for surface homeomorphisms

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We classify minimal sets of (closed and oriented) hyperbolic surface homeomorphisms by studying the connected components of their complement. This extends the classification given by Jäger et al. (Mat Z 274(1–2):405–426, 2013) in the torus. The classification being sensitive to global topology, striking differences with the toral case arise. We also show that the given classification can be strengthened when considered for non-wandering (conservative) systems, and in the homotopy class of pseudo-Anosov maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Here a usual abuse of notation is done in order to get the sets defined.

References

  1. Aranson, S., Belitskii, G., Zhuzhoma, E.: Introduction to the qualitative theory of dynamical systems on surfaces. Trans. A.M.S., 153 (1996)

  2. Boyland, P.: Topological methods in surface dynamics. Topol. Appl. 58, 223–298 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boyland, P.: Geometry and topology in dynamics, pp. 17–45. Winston-Salem, NC 1998/San Antonio, TX (1999)

  4. Casson, A., Bleiler, S.: Automorphism of Surfaces after Nielsen and Thurston, L.M.S Student Texts 9. Cambridge University Press, Cambridge (1988)

  5. Crovisier, S.: Exotic rotations. Course Notes (2006)

  6. Epstein, D.B.A.: Curves on 2-manifolds and isotopies. Acta Math. 115, 83–107 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fayad, B., Katok, A.: Constructions in elliptic dynamics. Ergod. Theory Dyn. Syst. 24, 477–1520 (2004)

    Article  MathSciNet  Google Scholar 

  8. Franks, J., Le Calvez, P.: Regions of instability for non-twist maps. Ergod. Theory Dyn. Syst. 23(1), 111–141 (2003)

    Article  MATH  Google Scholar 

  9. Fuller, B.: The existence of periodic points. Ann Math. 57, 229–230 (1953)

  10. Handel, M.: A pathological area preserving \({C}^\infty \) diffeomorphism of the plane. Proc. Am. Math. Soc. 86(1), 163–168 (1982)

    MathSciNet  MATH  Google Scholar 

  11. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  12. Herman, M.: Construction of some curious diffeomorphisms of the Riemann sphere. J. Lond. Math. Soc. 34, 375–384 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hugo, P.: A note on collars of simple closed geodesics. Geom. Dedicata 112(1), 165–168 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Itzá-Ortiz, B.: Eigenvalues, K-theory and minimal flows. Can. J. Math. 59, 596–613 (2007)

    Article  MATH  Google Scholar 

  15. Jäger, T.: Linearisation of conservative toral homeomorphisms. Invent. Math. 176(3), 601–616 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jäger, T., Kwakkel, F., Passeggi, A.: A classification of minimal sets of torus homeomorphisms. Mat. Z. 274(1–2), 405–426 (2013)

    Article  MATH  Google Scholar 

  17. Koropecki, A.: Aperiodic invariant continua for surface homeomorphisms. Math. Z. 266(1), 229–236 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Koropecki, A., Armando Tal, F.: Strictly toral dynamics. Invent. Math. (to appear) (2013). arXiv:1201.1168.

  19. Kwakkel, F.: Minimal sets of non-resonant torus homeomorphisms. Fund. Math. 211, 41–76 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Le Calvez, P.: Propriétés des attracteurs de Birkhoff. Ergod. Theory Dyn. Syst. 8(2), 241–310 (1988)

    Article  MATH  Google Scholar 

  21. Mañé, R.: Expansive homeomorphisms and topological dimension. Trans. A.M.S 252, 223–298 (1979)

  22. Matsumoto, S.: Rotation sets of invariant separating continua of annular homeomorphisms (Preprint) (2010). arXiv:1011.3176

  23. McSwiggen, P.D.: Diffeomorphisms of the \(k\)-torus with wandering domains. Ergod. Theory Dyn. Syst. 15(6), 1189–1205 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Matsumoto, S., Nakayama, H.: Continua as minimal sets of homeomorphisms of \(S^2\). Enseign. Math. 57(3–4), 373–392 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Richards, I.: On the classification of noncompact surfaces. Trans. Am. Math. Soc 324(1), 303–317 (1991)

    Article  Google Scholar 

  26. Thurston, W.: On the geometry and dynamics of diffeomorphisms of surfaces. Bull. A.M.S 19(2), 417–431 (1998)

    Article  Google Scholar 

  27. Whyburn, G.: Analytic Topology, vol. 28. AMS Colloquium Publications, Providence (1942)

    MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank the referee for numerous suggestions, which helped to clarify several proofs throughout this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Passeggi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Passeggi, A., Xavier, J. A classification of minimal sets for surface homeomorphisms. Math. Z. 278, 1153–1177 (2014). https://doi.org/10.1007/s00209-014-1350-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-014-1350-2

Keywords

Navigation