Skip to main content
Log in

On Borcherds type Lie algebras

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

For each even lattice \({\mathcal L}\), there is a canonical way to construct an infinite-dimensional Lie algebra via lattice vertex operator algebra theory, we call this Lie algebra and its subalgebras the Borcherds type Lie algebras associated to \({\mathcal L}\). In this paper, we apply this construction to even lattices arising from representation theory of finite-dimensional associative algebras. This is motivated by the different realizations of Kac-Moody algebras by Borcherds using lattice vertex operators and by Peng-Xiao using Ringel-Hall algebras respectively. For any finite-dimensional algebra \(A\) of finite global dimension, we associate a Borcherds type Lie algebra \(\mathfrak {BL}(A)\) to \(A\). In contrast to the Ringel-Hall Lie algebra approach, \(\mathfrak {BL}(A)\) only depends on the symmetric Euler form or Tits form but not the full representation theory of \(A\). However, our results show that for certain classes of finite-dimensional algebras whose representation theory is ’controlled’ by the Euler bilinear forms or Tits forms, their Borcherds type Lie algebras do have close relations with the representation theory of these algebras. Beyond the class of hereditary algebras, these algebras include canonical algebras, representation-directed algebras and incidence algebras of finite prinjective types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allison, B., Azam, S., Berman, S., Gao, Y., Pianzola, A.: Extended affine lie algebras and their root systems. Mem. AMS 126, 603 (1997)

  2. Berman, S., Moody, R.V.: Lie algebras graded by finite root systems and intersection matrix algebras of Slodowy. Invent. Math. 108, 323–347 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barot, M., de la Peña, J.A.: The Dynkin type of a non-negative unit form. Expo. Math. 17, 339–349 (1999)

    MATH  Google Scholar 

  4. Barot, M., Kussin, D., Lenzing, H.: Lie algebra associated to a unit form. J. Algebra 296, 1–17 (2007)

    Article  MathSciNet  Google Scholar 

  5. Bongartz, K.: Algebras and quadratic forms. J. Lond. Math. Soc. 28, 461–469 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Borcherds, E.R.: Vertex algebra, Kac-Moody algebras and the Monster. Proc. Natl. Acad. Sci. USA 83, 3067–3071 (1986)

    Article  MathSciNet  Google Scholar 

  7. Crawley-Boevey, W.: Kac’s Theorem for weighted projective lines. J. Eur. Math. Soc. 12, 1331–1345 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dou, J., Sheng, J., Xiao, J.: Complex Lie algebras corresponding to weighted lines. Front. Math. China 6(4), 629–639 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eswara Rao, S., Moody, R.: Vertex representation for \(n\)-toroidal Lie algebras and a generalization of the Virasoro algebra. Commum. Math. Phys. 159, 239–264 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fang, Y., Peng, L.: Generalized Heisenberg algbebras and \(n\)-toroidal Lie algebras. Algebra Collq. 17(3), 375–388 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Frenkel, I., Kac, V.: Basic representation of affine Lie algebras and dual resonance models. Invent. Math. 62, 23–66 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  12. Frenkel, I., Lepowsky, J., Meurman, A.: Vertex Operator Algebras and the Monster, Pure and Applied Math, vol. 134. Academic Press, Boston (1988)

    Google Scholar 

  13. Fu, C.: On root categories of finite-dimensional algebras. J. Algebra 370, 233–265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Geigle, W., Lenzing, H.: A class of weighted projective curves arising in representation theory of finite dimensional algebras. In: Singularities, Representation of Algebras, and Vector Bundles. Lecture Notes in Mathematics, vol. 1273, pp. 265–297. Springer, Berlin (1987)

  15. Green, J.A.: Hall algebras, hereditary algebras and quantum groups. Invent. Math. 120, 361–377 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Haddi, A.: Détermination des extensions centralees des algèbres de Kac-Moody. C. R. Acad. Sci. Paris 306, 691–694 (1988)

    MathSciNet  MATH  Google Scholar 

  17. Kac, V.G.: Infinite Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  18. Kassel, C.: Kähler differentials and covering of complex simple Lie algebra extended over a commutative algebra. J. Pure Appl. Algebras 34, 265–275 (1985)

    Article  MathSciNet  Google Scholar 

  19. Kosakowska, J.: The existence of Hall polynomials for posets of finite prinjective type. J. Algebra 308, 654–655 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kosakowska, J.: Lie algebras associated with quadratic forms and their application to Ringel-Hall algebras. Algebra Discret. Math. 4, 49–79 (2008)

    MathSciNet  Google Scholar 

  21. Kosakowska, J.: A specialization of prinjective Ringel-Hall algebra and the associated Lie algebra. Acta Math. Sincia Eng. Ser. 24, 1687–1702 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kosakowska, J., Simson, D.: On Tits form and prinjective representation of poset of finite prinjective type. Commun. Algebra 26, 1613–1623 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lepowsky, J., Li, H.: Introduction to vertex operator algebras and their representation theory, Progress in Mathematics, vol. 227, Birkhauser, Boston (2004)

  24. Lin, Y., Peng, L.: Elliptic Lie algebras and tubular algebras. Adv. Math. 196, 487–530 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Moody, R., Eswara Rao, S.: Toroidal Lie algebras and vertex representations. Geom. Dedicata 35, 283–307 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  26. de la Peña, J.A., Simson, D.: Prinjective modules, reflection functors, quadratic form and Auslander Reiten sequences. Trans. Amer. Math. Soc. 329, 733–753 (1992)

  27. Peng, L.: Intersection matrix Lie algebras and Ringel-Hall Lie algebras of tilted algebras. In: Proceedings of the 9th International Conference on Representations of Algebras, vol. 1 pp. 98–108 (2002)

  28. Peng, L., Xiao, J.: Root categories and simple Lie algebras. J. Algebra 198(1), 19–56 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Peng, L., Xiao, J.: Triangulated categories and Kac-Moody algebras. Invent. Math. 140, 563–603 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Peng, L., Xu, M.: Symmetrizable intersection matrices and their root systems. arXiv:0912.1024

  31. Riedtmann, C.: Lie algebras generated by indecomposables. J. Algebra 170, 526–546 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rignel, C.M.: Tame Algebras and Integral Quadratic Forms. In: Dold, A., Eckmann, B. (eds.) Lecture Notes in Mathematics, 1099. Sprigner, Berlin (1984)

  33. Rignel, C.M.: Hall algebras and quantum groups. Invent. Math. 101, 583–592 (1990)

    Article  MathSciNet  Google Scholar 

  34. Rignel, C.M.: Hall algebra, In: Topics in Algebra. Banach Centre. Publ. 26, Part I. Warszawa, pp. 433–447. (1990)

  35. Rignel, C.M.: Lie algebras arising in representation theory, In:”Representations of Algebras and Related Topics”, London Math. Soc. LNS 168, pp. 284–291, Cambridge University Press, Cambridge (1992).

  36. Saito, K., Yoshii, D.: Extended affine root system IV (simply-laced elliptic Lie algebras). Publ. Res. Inst. Math. Sci. 36(3), 385–421 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Schiffmann, O.: Lecture on Hall algebras. arXiv:math/0611617v1

  38. Slodowy, P.: Beyond Kac-Moody algebras and inside. Can. Math. Soc. Conf. Proc. 5, 361–371 (1986)

    MathSciNet  Google Scholar 

  39. Xiao, J., Xu, F., Zhang, G.: Derived categories and Lie algebras. arXiv:math/0604564

Download references

Acknowledgments

We thank the referee for helpful suggestions and comments. This work was partially supported by the Fundamental Research Funds for the Central Universities (No.2013SCU04A44) and National Natural Science Foundation of China (No.11001185, 2011CB808003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changjian Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, C., Peng, L. On Borcherds type Lie algebras. Math. Z. 278, 705–742 (2014). https://doi.org/10.1007/s00209-014-1331-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-014-1331-5

Keywords

Mathematics Subject Classification (2010)

Navigation