Skip to main content
Log in

Universal geometric cluster algebras

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We consider, for each exchange matrix \(B\), a category of geometric cluster algebras over \(B\) and coefficient specializations between the cluster algebras. The category also depends on an underlying ring \(R\), usually \(\mathbb {Z},\,\mathbb {Q}\), or \(\mathbb {R}\). We broaden the definition of geometric cluster algebras slightly over the usual definition and adjust the definition of coefficient specializations accordingly. If the broader category admits a universal object, the universal object is called the cluster algebra over \(B\) with universal geometric coefficients, or the universal geometric cluster algebra over \(B\). Constructing universal geometric coefficients is equivalent to finding an \(R\)-basis for \(B\) (a “mutation-linear” analog of the usual linear-algebraic notion of a basis). Polyhedral geometry plays a key role, through the mutation fan \({\mathcal {F}}_B\), which we suspect to be an important object beyond its role in constructing universal geometric coefficients. We make the connection between \({\mathcal {F}}_B\) and \(\mathbf{g}\)-vectors. We construct universal geometric coefficients in rank \(2\) and in finite type and discuss the construction in affine type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Björner, A., Las Vergnas, M., Sturmfels, B., White, N., Ziegler, G.: Oriented Matroids. Encyclopedia of Mathematics and its Applications, vol. 46. Cambridge University Press, Cambridge, MA (1999)

    Google Scholar 

  2. Demonet, L.: Mutations of Group Species with Potentials and their Representations. Applications to Cluster Algebras, Preprint (2010). (arXiv:1003.5078)

  3. Demonet, L.: Personal communication (2012)

  4. Derksen, H., Weyman, J., Zelevinsky, A.: Quivers with potentials and their representations II: applications to cluster algebras. J. Am. Math. Soc. 23(3), 749–790 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fock, V.V., Goncharov, A.B.: Cluster ensembles, quantization and the dilogarithm. Ann. Sci. Éc. Norm. Supér. (4) 42(6), 865–930 (2009)

    Google Scholar 

  6. Fock, V.V., Goncharov, A.B.: Cluster X-Varieties At Infinity. Preprint (2011). (arXiv:1104.0407)

  7. Fomin, S., Shapiro, M., Thurston, D.: Cluster algebras and triangulated surfaces. I. Cluster complexes. Acta Math. 201(1), 83–146 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fomin, S., Thurston, D.: Cluster Algebras and Triangulated Surfaces. Part II: Lambda Lengths. Preprint (2008)

  9. Fomin, S., Zelevinsky, A.: \(Y\)-systems and generalized associahedra. Ann. Math. (2) 158(3), 977–1018 (2003)

  10. Fomin, S., Zelevinsky, A.: Cluster algebras. I. Foundations. J. Am. Math. Soc. 15(2), 497–529 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fomin, S., Zelevinsky, A.: Cluster algebras II: finite type classification. Invent. Math. 154, 63–121 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fomin, S., Zelevinsky, A.: Cluster algebras IV: coefficients. Compos. Math. 143, 112–164 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kac, V.: Infinite-Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge, MA (1990)

    Book  MATH  Google Scholar 

  14. Kelley, J.L.: General Topology. Graduate Texts in Mathematics, vol. 27. Springer, Berlin (1975)

    Google Scholar 

  15. Macdonald, I.G.: Affine root systems and Dedekind’s \(\eta \)-function. Invent. Math. 15, 91–143 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  16. Nagao, K.: Donaldson–Thomas Theory and Cluster Algebras. Preprint (2010). (arXiv:1002.4884)

  17. Nakanishi, T., Zelevinsky, A.: On tropical dualities in cluster algebras. In: Proceedings of Representation Theory of Algebraic groups and Quantum groups 10. Contemp. Math. vol. 565, pp. 217–226 (2012)

  18. Plamondon, P.-G.: Cluster algebras via cluster categories with infinite-dimensional morphism spaces. Compos. Math. 147, 1921–1954 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Reading, N.: Cambrian lattices. Adv. Math. 205(2), 313–353 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Reading, N.: Clusters, Coxeter-sortable elements and noncrossing partitions. Trans. Am. Math. Soc. 359(12), 5931–5958 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Reading, N.: Universal Geometric Cluster Algebras from Surfaces. Preprint (2012). (arXiv:1209.4095)

  22. Reading, N.: Universal Geometric Coefficients for the Once-Punctured Torus. Preprint (2012). (arXiv:1212.1351)

  23. Reading, N., Speyer, D.E.: Cambrian fans. J. Eur. Math. Soc. (JEMS) 11(2), 407–447 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Reading, N., Speyer, D.: Sortable elements in infinite Coxeter groups. Trans. Am. Math. Soc. 363(2), 699–761 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Reading, N., Speyer, D.: Sortable elements for quivers with cycles. Electron. J. Comb. 17(1) (2010), Research Paper 90, p 19

    Google Scholar 

  26. Reading, N., Speyer, D.E.: Combinatorial Frameworks for Cluster Algebras. Preprint (2011). (arXiv:1111.2652)

  27. Reading, N., Speyer, D.E.: Cambrian Frameworks for Cluster Algebras of Affine Cartan Type. In Preparation (2012)

  28. Speyer, D.E.: Personal communication (2011)

  29. Webster, R.: Oxford Science Publications. The Clarendon Press Oxford University Press, New York (1994)

    Google Scholar 

  30. Yang, S., Zelevinsky, A.: Cluster algebras of finite type via Coxeter elements and principal minors. Transform. Groups 13(3–4), 855–895 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

Thanks to Ehud Hrushovski for enlightening the author on the subject of endomorphisms of the additive group \(\mathbb {R}\) (in connection with Remark 3.5). Thanks to David Speyer for pointing out the role of the polynomials \(P_m\) in describing the \(\mathbf{g}\)-vectors associated to rank-2 exchange matrices of infinite type. (See Sect. 9.) Thanks to an anonymous referee of [21] for pointing out that Proposition 4.6 needs the hypothesis that \(R\) is a field.Thanks to Kiyoshi Igusa and Dylan Rupel for helping to detect an error in an earlier version. Thanks to an anonymous referee of this paper for many helpful suggestions which improved the exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Reading.

Additional information

This material is based upon work partially supported by the National Security Agency under Grant Number H98230-09-1-0056, by the Simons Foundation under Grant Number 209288 and by the National Science Foundation under Grant Number DMS-1101568.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reading, N. Universal geometric cluster algebras. Math. Z. 277, 499–547 (2014). https://doi.org/10.1007/s00209-013-1264-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-013-1264-4

Mathematics Subject Classification (2010)

Navigation