Skip to main content
Log in

On stable hypersurfaces with vanishing scalar curvature

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We will prove that there are no stable complete hypersurfaces of \(\mathbb {R}^4\) with zero scalar curvature, polynomial volume growth and such that \(\frac{(-K)}{H^3}\ge c>0\) everywhere, for some constant \(c>0\), where K denotes the Gauss-Kronecker curvature and \(H\) denotes the mean curvature of the immersion. Our second result is the Bernstein type one there is no entire graphs of \(\mathbb {R}^4\) with zero scalar curvature such that \(\frac{(-K)}{H^3}\ge c>0\) everywhere. At last, it will be proved that, if there exists a stable hypersurface with zero scalar curvature and \(\frac{(-K)}{H^3}\ge c>0\) everywhere, that is, with volume growth larger than polynomial growth of order four, then its tubular neighborhood is not embedded for suitable radius.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alencar, H., do Carmo, M.P., Colares, A.G.: Stable hypersurfaces with constant scalar curvature. Math. Z. 213, 117–131 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alencar, H., do Carmo, M.P., Elbert, M.F.: Stability of hypersurfaces with vanishing \(r-\)constant curvatures in Euclidean spaces. J. Reine Angew. Math. 554, 201–216 (2003)

    MATH  MathSciNet  Google Scholar 

  3. Alencar, H., Santos, W., Zhou, W.: Stable hypersurfaces with constant scalar curvature. Proc. Am. Math. Soc. 138, 3301–3312 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Barbosa, J.L., Colares, A.G.: Stability of hypersurfaces with constant \(r-\)mean curvature. Annal. Glob. Anal. Geom. 15, 277–297 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bray, H.L.: Proof of the Riemannian Penrose inequality using the positive mass theorem. J. Diff. Geo. 59, 177–267 (2001)

    MATH  MathSciNet  Google Scholar 

  6. Do Carmo, M.; Peng, C. K.: Stable complete minimal hypersurfaces. Proceedings of the 1980 Beijing symposium on differential geometry and differential equations, Vol. 1, 2, 3 (Beijing, 1980), 1349–1358, Sci. Press Beijing, Beijing, (1982)

  7. do Carmo, M., Elbert, M.F.: On Stable complete Hypersurfaces with vanishing \(r-\)mean curvature. Tohoku Math. J. 56, 155–162 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hartman, P., Nirenberg, L.: On spherical image maps whose Jacobians do not change sign. Am. J. Math. 81, 901–920 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hounie, J., Leite, M.L.: Two-ended hypersurfaces with zero scalar curvature. Indiana Univ. Math. J. 48, 867–882 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hounie, J., Leite, M.L.: Uniqueness and nonexistence theorems for hypersurfaces with \(H_r=0,\). Ann. Glob. Anal. Geom. 17, 397–407 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ilias, S., Nelli, B., Soret, M.: Caccioppoli’s inequalities on constant mean curvature hypersurfaces in Riemannian manifolds. Ann. Glob. Anal. Geom. 42(4), 433–471 (2012)

    Article  MathSciNet  Google Scholar 

  12. Nelli, B., Soret, M.: Stably embedded minimal hypersurfaces. Mathematische Zeitschrift. 255, 493–514 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Reilly, R.C.: Variational properties of functions of the mean curvatures for hypersurfaces in space forms. J. Diff. Geom. 8, 465–477 (1973)

    MATH  MathSciNet  Google Scholar 

  14. Rosenberg, H.: Hypersurfaces of constant curvatures in space forms. Bulletin des Sciences Mathematiques 117, 211–239 (1993)

    MATH  MathSciNet  Google Scholar 

  15. Schoen, R., Simon, L., Yau, S.-T.: Curvature estimates for minimal hypersurfaces. Acta Math. 134, 275–288 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  16. Cheng, S.Y., Yau, S.T.: Hypersurfaces with constant scalar curvature. Math. Ann. 225, 195–204 (1977)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

I would like to thank professor H. Alencar for read critically this manuscript and for make many valuable suggestions. I would also to thank D. Zhou by useful suggestions, and professor Barbara Nelli for her suggestions to clarify some arguments used in the proof of Theorem C. I would like also to thank the referee for his/hers valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Silva Neto.

Appendix

Appendix

Let us prove the following fact established in the Introduction:

Let \(x:M^3\rightarrow \mathbb {R}^4\) be an isometric immersion with zero scalar curvature. If \(H\) and \(K\) denotes the mean curvature and Gauss-Kronecker curvature, respectively, then

$$\begin{aligned} 0\le \dfrac{-K}{H^3}\le \dfrac{4}{27}\ \text{ everywhere } \text{ on } \ M. \end{aligned}$$

In fact, let \((\lambda _1,\lambda _2,\lambda _3)=t\omega \) where \(\omega \in \mathbb {S}^{2}\). Using (1.1), we can see that \(R,H\) and \(K\) are homogeneous polynomials. It implies \(H(t\omega )=tH(\omega ), \ R(t\omega )=t^2R(\omega ),\ K(t\omega )=t^3K(\omega )\) and hence

$$\begin{aligned} \dfrac{K}{H^3}(t\omega )=\dfrac{K}{H^3}(\omega ). \end{aligned}$$

Then the behavior of \(\frac{K}{H^3}\) depends only of its values on the sphere \(\mathbb {S}^{2}.\) Since \(N:=\{(\lambda _1,\lambda _2,\lambda _3)\in \mathbb {R}^3; R=\lambda _1\lambda _2+\lambda _1\lambda _3+\lambda _2\lambda _3=0\}\) is closed and \(\mathbb {S}^{2}\) is compact, we obtain that \(N_\omega =N\cap \mathbb {S}^{2}\) is compact, see Fig. 1. Then, \(\frac{K}{H^3}:N_\omega \rightarrow \mathbb {R}\) is a continuous function with compact domain. The claim then follow from the Weierstrass maxima and minima theorem. Upperbound \(\frac{4}{27}\) can be found using Lagrange multipliers method.

Fig. 1
figure 1

Representation of the domain \(N_\omega \) of \(\frac{K}{H^3}\) over \(\mathbb {S}^2,\) considering this function as an algebraic function of the eigenvalues. This domain is the intersection of one of the plane \(\lambda _1+\lambda _2+\lambda _3=1\) with \(\mathbb {S}^2.\) The hypothesis cuts off only three small neighbourhoods around the coordinate axis

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva Neto, G. On stable hypersurfaces with vanishing scalar curvature. Math. Z. 277, 481–497 (2014). https://doi.org/10.1007/s00209-013-1263-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-013-1263-5

Keywords

Mathematics Subject Classification (2000)

Navigation