Skip to main content
Log in

The \(\mathfrak {sl}_{3}\)-web algebra

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper we use Kuperberg’s \(\mathfrak {sl}_3\)-webs and Khovanov’s \(\mathfrak {sl}_3\)-foams to define a new algebra \(K^S\), which we call the \(\mathfrak {sl}_3\)-web algebra. It is the \(\mathfrak {sl}_3\) analogue of Khovanov’s arc algebra. We prove that \(K^S\) is a graded symmetric Frobenius algebra. Furthermore, we categorify an instance of \(q\)-skew Howe duality, which allows us to prove that \(K^S\) is Morita equivalent to a certain cyclotomic KLR-algebra of level 3. This allows us to determine the split Grothendieck group \(K^{\oplus }_0(\mathcal {W}^S)_{\mathbb {Q}(q)}\), to show that its center is isomorphic to the cohomology ring of a certain Spaltenstein variety, and to prove that \(K^S\) is a graded cellular algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The idea for this 2-representation was suggested by Mikhail Khovanov to M. M. in 2008 and its basic ideas were worked out modulo 2 in the unpublished preprint [45].

  2. We refer to objects of the category \(\mathcal {U}(\mathfrak {gl}_n)(\lambda ,\lambda ')\) as 1-morphisms of \(\mathcal {U}(\mathfrak {gl}_n)\). Likewise, the morphisms of \(\mathcal {U}(\mathfrak {gl}_n)(\lambda ,\lambda ')\) are called 2-morphisms in \(\mathcal {U}(\mathfrak {gl}_n)\).

  3. When comparing to Khovanov’s result for \(\mathfrak {sl}_2\), the reader should be aware that he labels the Springer fiber by \(\lambda ^T\), the transpose of \(\lambda \).

  4. We follow Kamnitzer’s exposition in “The ubiquity of Howe duality”, which is online available at https://sbseminar.wordpress.com/2007/08/10/the-ubiquity-of-howe-duality/.

References

  1. Bar-Natan, D.: Khovanov’s homology for tangles and cobordisms. Geom. Topol. 9, 1443–1499 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beilinson, A., Lusztig, G., MacPherson, R.: A geometric setting for the quantum deformation of \(\mathfrak{gl}_n\). Duke Math. J. 61(2), 655–677 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  3. Benson, D.J.: Representations and Cohomology I. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  4. Brundan, J.: Centers of degenerate cyclotomic Hecke algebras and parabolic category \(\cal {O}\). Represent. Theory 12, 236–259 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brundan, J.: Symmetric functions, parabolic category \(\cal {O}\) and the Springer fiber. Duke Math. J. 143, 41–79 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brundan, J., Kleshchev, A.: Blocks of cyclotomic Hecke algebras and Khovanov–Lauda algebras. Invent. Math. 178, 451–484 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brundan, J., Kleshchev, A.: Graded decomposition numbers for cyclotomic Hecke algebras. Adv. Math. 222, 1883–1942 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brundan, J., Ostrik, V.: Cohomology of Spaltenstein varieties. Transform. Groups 16, 619–648 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Brundan, J., Stroppel, C.: Highest weight categories arising from Khovanov’s diagram algebra I: cellularity. Mosc. Math. J. 11(4), 685–722 (2011)

    MATH  MathSciNet  Google Scholar 

  10. Brundan, J., Stroppel, C.: Highest weight categories arising from Khovanov’s diagram algebra II: Koszulity. Transform. Groups 15, 1–45 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Brundan, J., Stroppel, C.: Highest weight categories arising from Khovanov’s diagram algebra III: category \(\cal O\). Represent. Theory 15, 170–243 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Brundan, J., Stroppel, C.: Highest weight categories arising from Khovanov’s diagram algebra IV, the general linear supergroup. J. Eur. Math. Soc. 14, 373–419 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Brundan, J., Stroppel, C.: Gradings on walled Brauer algebras and Khovanov’s arc algebra. Adv. Math. 231, 709–773 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cautis, S.: Clasp technology to knot homology via the affine Grassmannian. Online available arXiv:1207.2074 (2012)

  15. Cautis, S., Kamnitzer, J., Morrison, S.: Webs and quantum skew Howe duality. Math. Ann. (accepted) arXiv:1210.6437 (2012)

    Google Scholar 

  16. Cautis, S., Lauda, A.: Implicit structures in 2-representations of quantum groups. Online available arXiv:1111.1431 (2011)

    Google Scholar 

  17. Chen, Y., Khovanov, M.: An invariant of tangle cobordisms via subquotients of arc rings. Online available arXiv:math/0610054 (2006)

  18. Chris, N., Ginzburg, V.: Representation Theory and Complex Geometry. Birkhäuser, Basel (1997)

    Google Scholar 

  19. Chuang, J., Rouquier, R.: Derived equivalences for symmetric groups and \(\mathfrak{sl}_2\)-categorification. Ann. Math. 167, 245–298 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Doty, S., Giaquinto, A.: Presenting Schur algebras. Int. Math. Res. Notices 36, 1907–1944 (2002)

    Article  MathSciNet  Google Scholar 

  21. Fontaine, B., Kamnitzer J., Kuperberg, G.: Buildings, spiders, and geometric Satake. Compos. Math. Available on CJO2013. doi:10.1112/S0010437X13007136 (2011)

  22. Frenkel, I., Khovanov, M., Kirillov Jr, A.: Kazhdan–Lusztig polynomials and canonical basis. Transform. Groups 3(4), 321–336 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  23. Fulton, W.: Young Tableaux, London Mathematical Society Student Texts, vol. 35. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  24. Gornik, B.: Note on Khovanov link cohomology. Online available arXiv:math/0402266 (2004)

  25. Howe, R.: Remarks on classical invariant theory. Trans. Am. Math. Soc. 313, 539–570 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  26. Howe, R.: Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond. In: The Schur lectures, Israel Mathematical Conference Proceedings 8, Tel Aviv (1992), 1–182

  27. Hu, J., Mathas, A.: Graded cellular bases for the cyclotomic Khovanov–Lauda–Rouquier algebras of type A. Adv. Math. 225(2), 598–642 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  28. Huerfano, R.S., Khovanov, M.: Categorification of some level two representations of sl(n). J. Knot Theor. Ramif. 15(6), 695–713 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kang, S.J., Kashiwara, M.: Categorification of highest weight modules via Khovanov–Lauda–Rouquier algebras. Invent. Math. 187(2), 1–44 (2012)

    MathSciNet  Google Scholar 

  30. Khovanov, M.: A functor-valued invariant of tangles. Algebr. Geom. Topol. 2, 665–741 (2002). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  31. Khovanov, M.: Crossingless matchings and the cohomology of \((n, n)\) Springer varieties. Commun. Contemp. Math. 6(2), 561–577 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Khovanov, M.: \(\mathfrak{sl}_3\) link homology. Algebr. Geom. Topol. 4, 1045–1081 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  33. Khovanov, M., Kuperberg, G.: Web bases for \(\mathfrak{sl}_3\) are not dual canonical. Pac. J. Math. 188(1), 129–153 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  34. Khovanov, M., Lauda, A.D.: A categorification of quantum \(\mathfrak{sl}_n\). Quantum Topol. 2(1), 1–92 (2010)

    Article  MathSciNet  Google Scholar 

  35. Khovanov, M., Lauda, A.D.: Erratum: “A categorification of quantum \(\mathfrak{sl}_n\)”. Quantum Topol. 2(1), 97–99 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  36. Khovanov, M., Lauda, A.D.: A diagrammatic approach to categorification of quantum groups I. Represent. Theor. 13, 309–347 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  37. Khovanov, M., Lauda, A.D., Mackaay, M., Stošić, M.: Extended graphical calculus for categorified quantum \(\mathfrak{sl}_2\). Mem. Am. Math. Soc. 219(1029) (2012)

  38. Khovanov, M., Rozansky, L.: Matrix factorizations and link homology I. Fundam. Math. 199(1), 1–91 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  39. König, S., Xi, C.: Cellular algebras: inflations and Morita equivalences. J. Lond. Math. Soc. 60(3), 700–722 (1999)

    Article  MATH  Google Scholar 

  40. Kuperberg, G.: Spiders for rank 2 Lie algebras. Commun. Math. Phys. 180, 109–151 (1996)

    Google Scholar 

  41. Lam, T.Y.: Lectures on Modules and Rings. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  42. Lauda, A.D., Queffelec, H., Rose, D.E.V.: Khovanov homology is a skew Howe 2-representation of categorified quantum sl(m). Online available arXiv:1212.6076 (2012)

  43. Lauda, A.D., Vazirani, M.: Crystals from categorified quantum groups. Adv. Math. 228(2), 803–861 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  44. Lusztig, G.: Introduction to Quantum Groups. Progress in Mathematics. Birkhäuser, Basel (1993)

    Google Scholar 

  45. Mackaay, M.: sl(3)-Foams and the Khovanov–Lauda categorification of quantum sl(k). Online available arXiv:0905.2059 (2009)

  46. Mackaay, M.: The sl(N)-web algebras and dual canonical bases. Online available arXiv:1308.0566 (2013)

    Google Scholar 

  47. Mackaay, M., Stošić, M., Vaz, P.: \(\mathfrak{sl}_N\)-link homology \((N\ge 4)\) using foams and the Kapustin–Li formula. Geom. Topol. 13(2), 1075–1128 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  48. Mackaay, M., Stošić, M., Vaz, P.: A diagrammatic categorification of the q-Schur algebra. Quantum Topol. 4(1), 1–75 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  49. Mackaay, M., Vaz, P.: The universal \(\mathfrak{sl}_3\)-link homology. Algebr. Geom. Topol. 7, 1135–1169 (2007). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  50. Mackaay, M., Vaz, P.: The foam and the matrix factorization \(\mathfrak{sl}_3\) link homologies are equivalent. Algebr. Geom. Topol. 8, 309–342 (2008). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  51. Mackaay, M., Yonezawa, Y.: The sl(N) web categories and categorified skew Howe duality. Online available arXiv:1306.6242 (2013)

    Google Scholar 

  52. A. Mathas, Iwahori-Hecke Algebras and Schur algebras of the Symmetric Group, U. Lect. Ser. Vol. 15, Am. Math. Soc. (1999)

  53. Mazorchuk, V., Stroppel, C.: A combinatorial approach to functorial quantum sl(k) knot invariants. Am. J. Math. 131(6), 1679–1713 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  54. Morrison, S., Nieh, A.: On Khovanov’s cobordism theory for \(\mathfrak{su}_3\) knot homology. J. Knot Theor. Ramif. 17(9), 1121–1173 (2008)

    Google Scholar 

  55. Robert, L.-H.: A large family of indecomposable projective modules for the Khovanov–Kuperberg algebra of \(\mathfrak{sl}_3\)-webs. J. Knot Theor. Ramif. 22(11), arXiv:1207.6287 (2013)

    Google Scholar 

  56. Robert, L.-H.: A characterisation of indecomposable web-modules over Khovanov–Kuperberg Algebras. Online available arXiv:1309.2793 (2013)

  57. Rotma, J.: An Introduction to Homological Algebra, 2nd edn. Springer, Berlin (2009)

    Book  Google Scholar 

  58. Rouquier, R.: 2-Kac-Moody algebras. Online available arXiv:0812.5023 (2008)

  59. Russell, H.: An explicit bijection between semistandard tableaux and non-elliptic \({\mathfrak{s}l}_3\) webs. J. Algebr. Comb. 38(4), 851–862. arXiv:1204.1037 (2013)

    Google Scholar 

  60. Sjödin, G.: On filtered modules and their associated graded modules. Math. Scand. 33, 229–249 (1973)

    MathSciNet  Google Scholar 

  61. Sridharan, R.: Filtered algebras and representations of Lie algebras. Trans. Am. Math. Soc. 100(3), 530–550 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  62. Stroppel, C.: Parabolic category O, perverse sheaves on Grassmannians, Springer fibres and Khovanov homology. Compos. Math. 145, 945–992 (2009)

    Article  MathSciNet  Google Scholar 

  63. Stroppel, C., Webster, B.: 2-Block Springer fibers: convolution algebras and coherent sheaves. Comment. Math. Helv. 87, 477–520 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  64. Tanisaki, T.: Defining ideals of the closures of the conjugacy classes and representations of the Weyl groups. Tohoku Math. J. 34, 575–585 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  65. Ueyama, K.: Graded Frobenius algebras and quantum Beilinson algebras. In: Proceedings of the 44th Symposium on Ring Theory and Representation Theory. Okayama University, Japan (2012)

  66. Varagnolo, M., Vasserot, E.: Canonical bases and Khovanov–Lauda algebras. J. Reine Angew. Math. 659, 67–100 (2011)

    MATH  MathSciNet  Google Scholar 

  67. Webster, B.: Knot invariants and higher representation theory I: diagrammatic and geometric categorification of tensor products. Online available arXiv:1001.2020 (2010)

  68. Webster, B.: Knot invariants and higher representation theory II: the categorification of quantum knot invariants. Online available arXiv:1005.4559 (2010)

    Google Scholar 

  69. Wu, H.: A colored sl(N)-homology for links in \(S^3\). Online available arXiv:0907.0695 (2009)

    Google Scholar 

  70. Yonezawa, Y.: Quantum \((\mathfrak{sl}_n, \wedge V_n)\) link invariant and matrix factorizations. Nagoya Math. J. 204, 69–123 (2011)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank Jonathan Brundan, Joel Kamnitzer, Mikhail Khovanov and Ben Webster for helpful exchanges of emails, some of which will hopefully bear fruit in future publications on this topic. In particular, we thank Mikhail Khovanov for spotting a crucial mistake in a previous version of this paper and Ben Webster for suggesting to us to use \(q\)-skew Howe duality in order to relate \(K^S\) to a cyclotomic KLR-algebra. M. M. thanks the Courant Research Center “Higher Order Structures” and the Graduiertenkolleg 1493 in Göttingen for sponsoring two research visits during this project. W. P. and D. T. thank the University of the Algarve and the Instituto Superior Técnico for sponsoring three research visits during this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mackaay.

Additional information

The first author was supported by the FCT—Fundação para a Ciência e a Tecnologia, through project number PTDC/MAT/101503/2008, New Geometry and Topology.

The second and the third author were supported by the German Research Foundation (Deutsche Forschungsgemeinschaft (DFG)) through the Institutional Strategy of the University of Göttingen.

Appendix: Filtered and graded algebras and modules

Appendix: Filtered and graded algebras and modules

In this appendix, we have collected some basic facts about filtered algebras, the associated graded algebras and the idempotents in both. Our main sources are [60] and [61]. In this appendix, everything is defined over an arbitrary commutative associative unital ring \(R\).

Let \(A\) be a finite dimensional, associative, unital \(R\)-algebra together with an increasing filtration of \(R\)-submodules

$$\begin{aligned} \{0\}\subset A_{-p}\subset A_{-p+1}\subset \cdots \subset A_0\subset \cdots \subset A_{m-1}\subset A_m=A. \end{aligned}$$

Actually, for any \(t\in \mathbb {Z}\) we have a subspace \(A_t\), where we extend the filtration above by

$$\begin{aligned} A_t= {\left\{ \begin{array}{ll} \{0\},&{} \text {if}\quad t<-p,\\ A,&{}\text {if}\quad p\ge m. \end{array}\right. } \end{aligned}$$

Note that in the language of [60], such a filtration is discrete, separated, exhaustive and complete. If \(1\in A_0\) and the multiplication satisfies \(A_iA_j\subseteq A_{i+j}\), we say that \(A\) is an associative, unital, filtered algebra.

The associated graded algebra is defined by

$$\begin{aligned} E(A)=\bigoplus _{i\in \mathbb {Z}} A_i/A_{i-1}, \end{aligned}$$

and is also associative and unital. Although \(A\) and \(E(A)\) are isomorphic \(R\)-modules, they are not isomorphic as algebras.

A finite dimensional, filtered \(A\)-module is a finite dimensional, unitary \(A\)-module \(M\) with an increasing filtration of \(R\)-submodules

$$\begin{aligned} \{0\}\subset M_{-q}\subset M_{-q+1}\subset \cdots \subset M_t=M, \end{aligned}$$

such that \(A_iM_j\subseteq M_{i+j}\), for all \(i,j\in \mathbb {Z}\), after extending the finite filtration to a \(\mathbb {Z}\)-filtration as above.

We define the \(t\)-fold suspension \(M\{t\}\) of \(M\), which has the same underlying \(A\)-module structure, but a new filtration defined by

$$\begin{aligned} M\{t\}_r=M_{r+t}. \end{aligned}$$

Given a filtered \(A\)-module \(M\), the associated graded module is defined by

$$\begin{aligned} E(M)=\bigoplus _{i\in \mathbb {Z}} M_i/M_{i-1}. \end{aligned}$$

An \(A\)-module map \(f:M\rightarrow N\) is said to preserve the filtrations if \(f(M_i)\subseteq N_i\), for all \(i\in \mathbb {Z}\). Any such map \(f:M\rightarrow N\) induces a grading preserving \(E(A)\)-module map \(E(f):E(M)\rightarrow E(N)\) in the obvious way.

This way, we get a functor

$$\begin{aligned} E:A\text {-}\mathrm{\mathbf{Mod}}_{\mathrm{fl}} \rightarrow E(A)\text {-}\mathrm{\mathbf{Mod}}_{\mathrm{gr}}, \end{aligned}$$

where \(A\text {-}\mathbf{Mod}_{\mathrm{fl}}\) is the category of finite dimensional, filtered \(A\)-modules and filtration preserving \(A\)-module maps and \(E(A)\text {-}\mathbf{Mod}_{\mathrm{gr}}\) is the category of finite dimensional, graded \(E(A)\)-modules and grading preserving \(E(A)\)-module maps.

Recall that \(A\text {-}\mathbf{Mod}_{\mathrm{fl}}\) is not an abelian category, e.g. the identity map \(M\rightarrow M\{1\}\) is a filtration preserving bijective \(A\)-module map, but does not have an inverse in \(A\text {-}\mathbf{Mod}_{\mathrm{fl}}\).

In order to avoid such complications, one can consider a subcategory with fewer morphisms. An \(A\)-module map \(f:M\rightarrow N\) is called strict if

$$\begin{aligned} f(M_i)=f(M)\cap N_i \end{aligned}$$

holds, for all \(i\in \mathbb {Z}\). Let \(A\text {-}\mathbf{Mod}_{\mathrm{st}}\) be the subcategory of filtered \(A\)-modules and strict \(A\)-module homomorphisms.

Lemma 5.34

The restriction of \(E\) to \(A\text {-}\mathbf{Mod}_{\mathrm{st}}\) is exact.

We also need to recall a simple result about bases. A basis \(\{x_1,\ldots ,x_n\}\) of a filtered algebra \(A\) is called homogeneous if, for each \(1\le j\le n\), there exists an \(i\in \mathbb {Z}\) such that \(x_j\in A_i\backslash A_{i-1}\). In that case, \(\{\overline{x}_1,\ldots ,\overline{x}_n\}\) defines a homogeneous basis of \(E(A)\), where \(\overline{x_j}\in A_i/A_{i-1}\). In order to avoid cluttering our notation, we always write \(\overline{x}_j\) and then specify in which subquotient we take the equivalence class by saying that it belongs to \(A_i/A_{i-1}\).

Given a homogeneous basis \(\{y_1,\ldots ,y_n\}\) of the associated graded \(E(A)\), we say that a homogeneous basis \(\{x_1,\ldots ,x_n\}\) of \(A\) lifts \(\{y_1,\ldots ,y_n\}\) if \(\overline{x}_j=y_j\in A_i/A_{i-1}\) holds, for each \(1\le j\le n\) and the corresponding \(i\in \mathbb {Z}\). The result in the following lemma is well-known. However, we could not find a reference in the literature, so we provide a short proof here.

Lemma 5.35

Let \(A\) be a finite dimensional, filtered algebra and \(\{y_1,\ldots ,y_n\}\) be a homogeneous basis of \(E(A)\). Then there is a homogeneous basis \(\{x_1,\ldots ,x_n\}\) of \(A\) which lifts \(\{y_1,\ldots ,y_n\}\).

Proof

We prove the lemma by induction with respect to the filtration degree \(q\). Suppose \(A_q=0\), for all \(q<-p\), and \(A_q=A\), for all \(q\ge m\). Then \(E(A_{-p})=A_{-p}\). Since \(\{y_1,\ldots ,y_n\}\) is a homogeneous basis of \(E(A)\), a subset of this basis forms a basis of \(A_{-p}\).

For each \(-p+1\le q\le m\), choose elements in \(A_q\) which lift the homogeneous subbasis of \(E(A_q)\). We claim that the union of the sets of these elements, for all \(-p\le q\le m\), form a homogeneous basis of \(A\) which lifts \(\{y_1,\ldots ,y_n\}\). Call it \(\{x_1,\ldots ,x_n\}\). By definition, the \(x_j\) lift the \(y_j\), for all \(1\le j\le n\). It remains to show that the \(x_j\) are all linearly independent. This is true for \(q=-p\), as shown above.

Let \(q>-p\) and suppose that the claim holds for \(\{x_1,\ldots ,x_{m_{q-1}}\}\), the subset of \(\{x_1,\ldots ,x_n\}\) which belongs to \(A_{q-1}\). Let

$$\begin{aligned} \{x_1,\ldots , x_{m_q}\}=\{x_1,\ldots ,x_{m_{q-1}}\}\cup \{x_{m_{q-1}+1},\ldots ,x_{m_q}\} \end{aligned}$$

be the subset belonging to \(A_q\). Suppose that

$$\begin{aligned} \sum _{j=1}^{m_q}\lambda _jx_j=0, \end{aligned}$$
(6.1)

with \(\lambda _j\in R\). Then we have

$$\begin{aligned} \sum _{j=1}^{m_q}\lambda _j\overline{x}_j=\sum _{j=m_{q-1}+1}^{m_q}\lambda _j\overline{x}_j=\sum _{j=m_{q-1}+1}^{m_q}\lambda _jy_j=0 \in A_q/A_{q-1}. \end{aligned}$$

By the linear independence of the \(y_j\), this implies that \(\lambda _j=0\), for all \(m_{q-1}+1\le j\le m_q\). Thus, the linear combination in (5.28) becomes

$$\begin{aligned} \sum _{j=1}^{m_{q-1}}\lambda _jx_j=0. \end{aligned}$$

By induction, this implies that \(\lambda _j=0\), for all \(1\le j\le m_{q-1}\).

This shows that \(\lambda _j=0\), for all \(1\le j\le n\), so the \(x_j\) are linearly independent.\(\square \)

For a proof of the following proposition, see for example Proposition 1 in the appendix of [61].

Proposition 5.36

Let \(M\) and \(N\) be filtered \(A\)-modules and \(f:M\rightarrow N\) a filtration preserving \(A\)-linear map. If \(E(f):E(M)\rightarrow E(N)\) is an isomorphism, then \(f\) is an isomorphism (and therefore strict too).

The most important fact about filtered, projective modules and their associated graded, projective modules, that we need in this paper, is Theorem 6 in [60]. Note that these projective modules are the projective objects in the category \(A\text {-}\mathrm{\mathbf{Mod}}_{\mathrm{st}}\).

Theorem 5.37

(Sjödin) Let \(P\) be a finite dimensional, graded, projective \(E(A)\)-module. Then there exists a finite dimensional, filtered, projective \(A\)-module \(P'\), such that \(E(P')=P\). Moreover, if \(M\) is a finite dimensional, filtered, \(A\)-module, then any degree preserving \(E(A)\)-module map \(P\rightarrow E(M)\{t\}\), for some grading shift \(t\in \mathbb {Z}\), lifts to a filtration preserving \(A\)-module map \(P'\rightarrow M\{t\}\).

We also recall the following corollary of Sjödin (Corollary in [60] after Lemma 20).

Corollary 5.38

Let \(M\) be a finite dimensional, filtered, \(A\)-module, then any finite or countable set of orthogonal idempotents in

$$\begin{aligned} \mathrm{im}(\phi )\subset \mathrm{Hom}_{E(A)}(E(M),E(M)) \end{aligned}$$

can be lifted to \(\mathrm{Hom}_{A}(M,M)\), where \(\phi \) is the natural transformation

$$\begin{aligned} \phi :E(\mathrm{Hom}_{A}(M,M))\rightarrow \mathrm{Hom}_{E(A)}(E(M),E(M)). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mackaay, M., Pan, W. & Tubbenhauer, D. The \(\mathfrak {sl}_{3}\)-web algebra. Math. Z. 277, 401–479 (2014). https://doi.org/10.1007/s00209-013-1262-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-013-1262-6

Keywords

Navigation