Skip to main content
Log in

The topology of real suspension singularities of type \(f\bar{g}+z^n\)

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this article we study the topology of a family of real analytic germs \(F :(\mathbb {C}^3,0) \rightarrow (\mathbb {C},0)\) with isolated critical point at the origin, given by \(F(x,y,z)=f(x,y)\overline{g(x,y)}+z^r\), where \(f\) and \(g\) are holomorphic, \(r \in \mathbb {Z}_{}^+\) and \(r \ge 2\). We describe the link \(L_F\) as a graph manifold using its natural open book decomposition, related to the Milnor fibration of the map-germ \(f\bar{g}\) and the description of its monodromy as a quasi-periodic diffeomorphism through its Nielsen invariants. Furthermore, such a germ \(F\) gives rise to a Milnor fibration \(\frac{F}{|F|} :\mathbb {S}^{5} {\setminus } L_F \rightarrow \mathbb {S}^{1}\). We present a join theorem, which allows us to describe the homotopy type of the Milnor fibre of \(F\) and we show some cases where the open book decomposition of \(\mathbb {S}^{5}\) given by the Milnor fibration of \(F\) cannot come from the Milnor fibration of a complex singularity in \(\mathbb {C}^3\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Aguilar-Cabrera, H.: New open-book decompositions in singularity theory. Geometriae Dedicata 158, 87–108 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ban, C., McEwan, L.J., Némethi, A.: The embedded resolution of \(f(x, y)+z^2 (\mathbb{C}^3,0) \rightarrow (\mathbb{C},0)\). Studia Scientiarum Mathematicarum Hungarica 38, 51–71 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chaves, N.: Variétés Graphées Fibrées sur le cercle et Difféomorphismes Quasi-Finis de Surfaces. PhD thesis, Université de Genéve (1996)

  4. Cisneros-Molina, J.L., Seade, J., Snoussi, J.: Milnor fibrations and \(d\)-regularity for real analytic singularities. Int. J. Math. 21(4), 419–434 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Du Bois, P., Michel, F.: The integral Seifert form does not determine the topology of plane curve germs. J. Algebr. Geom. 3, 1–38 (1994)

    MATH  Google Scholar 

  6. Durfee, A.H.: Neighborhoods of algebraic sets. Trans. Am. Math. Soc. 276(2), 517–530 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  7. Eisenbud, D., Neumann, W.D.: Three Dimensional Link Theory and Invariants of Plane Curve Germs. Annals of Mathematics Studies, vol. 110 (1985)

  8. González Acuña, F., Montesinos, J.M.: Embedding knots in trivial knots. Bull. Lond. Math. Soc. 14(3), 238–240 (1982)

    Article  MATH  Google Scholar 

  9. Kauffman, L.H., Neumann, W.D.: Products of knots, branched fibrations and sums of singularities. Topology 16(4), 369–393 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  10. Mendris, R., Némethi, A.: The link of \(\{f(x, y)+z^n=0\}\) and Zariski’s conjecture. Compos. Math. 141(2), 502–524 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Milnor, J.: Singular Points of Complex Hypersurfaces. Annals of Mathematics Studies, No 61 (1968)

  12. Montesinos, J.M.: Classical tessellations and three-manifolds. Universitext, Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  13. Némethi, A.: Dedekind sums and the signature of \(f(x, y)+z^N\). Selecta Mathematica (N.S.) 4(2), 361–376 (1998)

    Article  MATH  Google Scholar 

  14. Némethi, A., Szilárd, A.: Milnor Fiber Boundary of a Non-Isolated Surface Singularity. Lecture Notes in Math. 2037 (2012)

  15. Neumann, W.D.: Cyclic suspension of knots and periodicity of signature for singularities. Bull. Am. Math. Soc. 80, 977–981 (1974)

    Article  MATH  Google Scholar 

  16. Neumann, W.D.: A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves. Trans. Am. Math. Soc. 268(2), 299–344 (1981)

    Article  MATH  Google Scholar 

  17. Neumann, W.D., Raymond, F.: Seifert manifolds, plumbing, \(\mu \)-invariant and orientation reversing maps. Lect. Notes Math. 664, 163–196 (1978)

    Article  MathSciNet  Google Scholar 

  18. Nielsen, J.: The structure of periodic surface transformations. Jakob Nielsen Collect. Math. Pap. 2 (1986)

  19. Nielsen J.: Surface transformation classes of algebraically finite type. Jakob Nielsen Collect. Math. Pap. 2 (1986)

  20. Pichon, A.: Three-dimensional manifolds which are the boundary of a normal singularity \(z^k-f(x, y)\). Mathematische Zeitschrift 231(4), 625–654 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Pichon, A.: Fibrations sur le cercle et surfaces complexes. Ann. Inst. Fourier 51(2), 337–374 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Pichon, A.: Real analytic germs \(f\overline{g}\) and open-book decompositions of the 3-sphere. Int. J. Math. 16(1), 1–12 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Pichon, A., Seade, J.: Fibred multilinks and singularities \(f\bar{g}\). Math. Ann. 342(3), 487–514 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Seade, J.: A cobordism invariant for surface singularities. Proc. Symp. Pure Math. 40, 479–484 (1983)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

I am most grateful to Anne Pichon and José Seade for their supervision and comments on this work. I also want to thank Professor Walter Neumann and Patrick Popescu-Pampu for all their suggestions which improved greatly the present article, José Luis Cisneros-Molina for helpful conversations and remarks, and the referee for his comments and suggestions. Research partially supported by grants U55084 and J49048-F of the Consejo Nacional de Ciencia y Tecnología (CONACyT, Mexico), by grant M06-M02 of the Coopération Scientifique France- Amérique Latine (ECOS, France–Mexico), by the Laboratorio Internacional Solomon Lefschetz of the Centre National de la Recherche Scientifique and the Consejo Nacional de Ciencia y Tecnología (CNRS-CONACyT, France and Mexico) and by a postdoctoral fellowship of the Consejo Nacional de Ciencia y Tecnología (CONACyT, Mexico). The hospitality at Columbia University is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haydée Aguilar-Cabrera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguilar-Cabrera, H. The topology of real suspension singularities of type \(f\bar{g}+z^n\) . Math. Z. 277, 209–240 (2014). https://doi.org/10.1007/s00209-013-1251-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-013-1251-9

Keywords

Mathematics Subject Classification (2000)

Navigation