Skip to main content
Log in

Decomposable and indecomposable algebras of degree \(8\) and exponent 2

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We study the decomposition of central simple algebras of exponent 2 into tensor products of quaternion algebras. We consider in particular decompositions in which one of the quaternion algebras contains a given quadratic extension. Let \(B\) be a biquaternion algebra over \(F(\sqrt{a})\) with trivial corestriction. A degree 3 cohomological invariant is defined and we show that it determines whether \(B\) has a descent to \(F\). This invariant is used to give examples of indecomposable algebras of degree \(8\) and exponent 2 over a field of 2-cohomological dimension 3 and over a field \(\mathbb M(t)\) where the \(u\)-invariant of \(\mathbb M\) is \(8\) and \(t\) is an indeterminate. The construction of these indecomposable algebras uses Chow group computations provided by Merkurjev in “Appendix”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albert, A.A.: Structure of Algebras, Colloquium Publications, vol. 24. AMS, Providence (1961)

    Google Scholar 

  2. Amitsur, S.A., Rowen, L.H., Tignol, J.-P.: Division algebras of degree 4 and 8 with involution. Isreal J. Math. 33, 133–148 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arason, J.K.: Cohomologische invarianten quadratischer Formen. J. Algebra 36, 448–491 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  4. Barry, D.: Power-central elements in tensor products of cyclic algebras (in preparation)

  5. Borel, A., Serre, J.-P.: Théorèmes de finitude en cohomologie galoisienne. Comment. Math. Helv. 39, 111–164, (1964–1965).

  6. Elman, R., Lam, T.Y., Tignol, J.-P., Wadsworth, A.: Witt rings and Brauer groups under multiquadratic extensions. I. Am. J. Math. 105, 1119–1170 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  7. Elman, R., Karpenko, N., Merkurjev, S.A.: The Algebraic and Geometric Theory of Quadratic Forms, Colloquium Publications, vol. 56. AMS, Providence, RI (2008)

    Google Scholar 

  8. Fulton, W.: Intersection Theory. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  9. Garibaldi, S., Merkurjev, A., Serre, J.-P.: Cohomological Invariants in Galois Cohomology, vol. 28 of University Lecture Series. American Mathematical Society, Providence, RI (2003)

    Google Scholar 

  10. Garibaldi, S., Parimala, R., Tignol, J.-P.: Discriminant of symplectic involutions. Pure Appl. Math. Q. 5, 349–374 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Grothendieck, A.: La théorie des classes de Chern. Bull. Soc. Math. France 86, 137–154 (1958)

    MATH  MathSciNet  Google Scholar 

  12. Kahn, B.: Quelques remarques sur le \(u\)-invariant, Sém. Théor. Nombres Bordeaux 2, 155–161 (1990). Erratum in: Sém. Théor. Nombres Bordeaux 3, 247 (1991)

  13. Kahn, B.: Formes Quadratiques sur un Corps. Société Mathématique de France, Paris (2008)

    MATH  Google Scholar 

  14. Karpenko, N.A.: Algebro-geometric invariants of quadratic forms. Algebra i Analiz 2(1), 141–162 (1990)

    Google Scholar 

  15. Karpenko, N.A.: Torsion in \({\rm CH}^2\) of Severi–Brauer varieties and indecomposability of generic algebras. Manuscr. Math. 88(1), 109–117 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Karpenko, N.A.: Codimension 2 cycles on Severi–Brauer varieties. K-Theory 13, 305–330 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Karpenko, N.A.: Weil transfer of algebraic cycles. Indag. Math. 11(1), 73–86 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lam, T.Y., Leep, D.B., Tignol, J.-P.: Biquaternion algebras and quartic extensions. Publ. Math. I.H.E.S. 77, 63–102 (1993)

    Google Scholar 

  19. Lam, T.Y.: Introduction to Quadratic Forms Over Fields, Graduate Studies in Mathematics, vol. 67. AMS, Providence (2005)

    Google Scholar 

  20. Merkurjev, A.S., Suslin, A.A.: \(K\)-cohomology of Severi–Brauer varieties and the norm residue homomorphism, Izv. Akad. Nauk. SSSR Ser. Mat 46(5), 1011–1046 (1982) [English translation: Math. USSR-Ivz. 21(2), 307–340 (1983)]

  21. Merkurjev, A.S.: Simple algebras and quadratic forms. Izv. Akad. Nauk. SSSR Ser. Mat 55(1), 218–224 (1991) [English translation: Math. USSR-Ivz. 38(1), 215–221 (1992)]

    Google Scholar 

  22. Merkurjev, A.S.: On the norm residue symbol of degree 2. Sov. Math. Dokl. 24, 546–551 (1981)

    Google Scholar 

  23. Merkurjev, A.S.: The group \(H^1(X, K_2)\) for projective homogeneous varieties. Algebra i Analiz 7(3), 136–164 (1995)

    MathSciNet  Google Scholar 

  24. Merkurjev, A.S., Tignol, J.-P.: The multipliers of similitudes and the Brauer group of homogeneous varieties. J. Reine Angew. Math. 461, 13–47 (1995)

    MATH  MathSciNet  Google Scholar 

  25. Panin, I.A.: On the algebraic \(K\)-theory of twisted flag varieties. K-Theory 8(6), 541–585 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  26. Peyre, E.: Corps de fonction de variétés homogènes et cohomologie galoisienne. C. R. Acad. Sci. Paris, t. 321, Série I 321, 891–896 (1995a)

  27. Peyre, E.: Products of Severi-Brauer varieties and Galois cohomology. In: Proceedings of the Symposia in Pure Mathematics, vol. 58, pp. 369–401. AMS, Providence (1995b)

  28. Pierce, R.S.: Associative Algebras. Graduate Texts in Mathematics, vol. 88. Springer, New York (1982)

    Book  Google Scholar 

  29. Rost, M.: Chow groups with coefficients. Doc. Math. 1(16), 319–393 (1996).

    Google Scholar 

  30. Scharlau, W.: Quadratic and Hermitian forms, Grundlehren, vol. 270. Springer, Berlin (1985)

    Book  Google Scholar 

  31. Scheiderer, C.: Real and étale Cohomology. Lecture notes in Mathematics, vol. 1588. Springer, Berlin (1994)

    Google Scholar 

  32. Serre, J.-P.: Cohomologie Galoisienne, 5e éd., révisée et complétée, Lecture Notes in Mathematics, vol. 5. Springer, Berlin (1997)

    Google Scholar 

  33. Sivatski, A.S.: Applications of Clifford algebras to involutions and quadratic forms. Commun. Algebra 33, 937–951 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  34. Tignol, J.-P.: Algèbres indécomposables d’exposant premier. Adv. Math. 65, 205–228 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is part of my PhD thesis at Université catholique de Louvain and Université Paris 13. I would like to thank my thesis supervisors, Anne Quéguiner-Mathieu and Jean-Pierre Tignol, for directing me towards this problem. I would also like to thank Karim Johannes Becher for suggesting Theorem 1.1 and the idea of the proof of Lemma 2.1. I am particularly grateful to Alexander S. Merkurjev for providing the appendix of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demba Barry.

Additional information

With an appendix by A. S. Merkurjev.

Appendix 1: On the Chow group of cycles of codimension 2

Appendix 1: On the Chow group of cycles of codimension 2

A. S. Merkurjev Department of Mathematics, University of California, Los Angeles, CA, USA email: merkurev@math.ucla.edu

Let \(X\) be an algebraic variety over \(F\). We write \(A^i(X,K_n)\) for the homology group of the complex

$$\begin{aligned} \coprod _{x\in X^{(i-1)}}K_{n-i+1}\bigl (F(x)\bigr )\mathop {\longrightarrow }\limits ^{\partial } \coprod _{x\in X^{(i)}}K_{n-i}\bigl (F(x)\bigr )\mathop {\longrightarrow }\limits ^{\partial } \coprod _{x\in X^{(i+1)}}K_{n-i-1}\bigl (F(x)\bigr ), \end{aligned}$$

where \(K_j\) are the Milnor \(K\)-groups and \(X^{(i)}\) is the set of points in \(X\) of codimension \(i\) (see [29, §5]). In particular, \(A^i(X,K_i)={\mathrm{CH }}^i(X)\) is the Chow group of classes of codimension \(i\) algebraic cycles on \(X\).

Let \(X\) and \(Y\) be smooth complete geometrically irreducible varieties over \(F\).

Proposition 6.1

Suppose that for every field extension \(K/F\) we have:

  1. (1)

    The natural map \({\mathrm{CH }}^1(X)\longrightarrow {\mathrm{CH }}^1(X_K)\) is an isomorphism of torsion free groups,

  2. (2)

    The product map \({\mathrm{CH }}^1(X_K)\otimes K^\times \longrightarrow A^1(X_K,K_2)\) is an isomorphism.

Then the natural sequence

$$\begin{aligned} 0\longrightarrow \bigl ({\mathrm{CH }}^1(X)\otimes {\mathrm{CH }}^1(Y)\bigr )\oplus {\mathrm{CH }}^2(Y)\longrightarrow {\mathrm{CH }}^2(X\times Y)\longrightarrow {\mathrm{CH }}^2(X_{F(Y)}), \end{aligned}$$

is exact.

Proof

Consider the spectral sequence

$$\begin{aligned} E_1^{p,q}=\coprod _{y\in Y^{(p)}} A^q(X_{F(y)},K_{2-p})\Longrightarrow A^{p+q}(X\times Y,K_2), \end{aligned}$$

for the projection \(X\times Y\longrightarrow Y\) (see [29, Cor. 8.2]). The nonzero terms of the first page are the following:

Then \(E_1^{2,0}=\coprod _{y\in Y^{(2)}} {\mathbb {Z}}\) is the group of cycles on \(X\) of codimension 2 and \(E_1^{1,0}=\coprod _{y\in Y^{(1)}} F(y)^\times \) as \(X\) is complete. It follows that \(E_2^{2,0}={\mathrm{CH }}^2(Y)\).

By assumption, the differential \(E_1^{0,1}\longrightarrow E_1^{1,1}\) is identified with the map

$$\begin{aligned} {\mathrm{CH }}^1(X)\otimes \left( F(Y)^\times \longrightarrow \coprod _{y\in Y^{(1)}} {\mathbb {Z}}\right) . \end{aligned}$$

Since \(Y\) is complete and \({\mathrm{CH }}^1(X)\) is torsion free, we have \(E_2^{0,1}={\mathrm{CH }}^1(X)\otimes F^\times \) and \(E_\infty ^{1,1}=E_2^{1,1}={\mathrm{CH }}^1(X)\otimes {\mathrm{CH }}^1(Y)\).

The edge map

$$\begin{aligned} A^1(X\times Y,K_2)\longrightarrow E_2^{0,1}={\mathrm{CH }}^1(X)\otimes F^\times , \end{aligned}$$

is split by the product map

$$\begin{aligned} {\mathrm{CH }}^1(X)\otimes F^\times =A^1(X,K_1)\otimes A^0(Y,K_1)\longrightarrow A^1(X\times Y,K_2), \end{aligned}$$

hence the edge map is surjective. Therefore, the differential \(E_2^{0,1}\longrightarrow E_2^{2,0}\) is trivial and hence \(E_\infty ^{2,0}= E_2^{2,0}={\mathrm{CH }}^2(Y)\). Thus, the natural homomorphism

$$\begin{aligned} {\mathrm{CH }}^2(Y)\longrightarrow {\mathrm{Ker }}\bigl ({\mathrm{CH }}^2(X\times Y)\longrightarrow {\mathrm{CH }}^2(X_{F(Y)})\bigr ) \end{aligned}$$

is injective and its cokernel is isomorphic to \({\mathrm{CH }}^1(X)\otimes {\mathrm{CH }}^1(Y)\). The statement follows. \(\square \)

Example 6.2

Let \(X\) be a projective homogeneous variety of a semisimple algebraic group over \(F\). There exist an étale \(F\)-algebra \(E\) and an Azumaya \(E\)-algebra \(A\) such that for \(i=0\) and 1, we have an exact sequence

$$\begin{aligned} 0\longrightarrow A^1(X,K_{i+1})\longrightarrow K_i(E) \overset{\rho }{\longrightarrow } H^{i+2}\bigl (F,{\mathbb {Q}}/{\mathbb {Z}}(i+1)\bigr ), \end{aligned}$$

where \(\rho (x)=N_{E/F}\bigl ((x)\cup [A]\bigr )\) (see [23] and [24]). If the algebras \(E\) and \(A\) are split, then \(\rho \) is trivial and for every field extension \(K/F\),

$$\begin{aligned}&{\mathrm{CH }}^1(X)\simeq K_0(E)\simeq K_0(E\otimes K)\simeq {\mathrm{CH }}^1(X_K),\\&A^1(X_K,K_{2})\simeq K_1(E\otimes K)\simeq K_0(E)\otimes K^\times \simeq {\mathrm{CH }}^1(X_K)\otimes K^\times . \end{aligned}$$

Therefore, the condition \((1)\) and \((2)\) in Proposition 6.1 hold. For example, if \(X\) is a smooth projective quadric of dimension at least 3, then \(E=F\) and \(A\) is split.

Now consider the natural complex

$$\begin{aligned} {\mathrm{CH }}^2(X)\oplus \bigl ({\mathrm{CH }}^1(X)\otimes {\mathrm{CH }}^1(Y)\bigr )\longrightarrow {\mathrm{CH }}^2(X\times Y)\longrightarrow {\mathrm{CH }}^2(Y_{F(X)}). \end{aligned}$$
(6.1)

Proposition 6.3

Suppose that

  1. (1)

    The Grothendieck group \(K_0(Y)\) is torsion-free,

  2. (2)

    The product map \(K_0(X)\otimes K_0(Y)\longrightarrow K_0(X\times Y)\) is an isomorphism.

Then the sequence (6.1) is exact.

Proof

It follows from the assumptions that the map \(K_0(Y)\longrightarrow K_0(Y_{F(X)})\) is injective and the kernel of the natural homomorphism \(K_0(X\times Y)\longrightarrow K_0(Y_{F(X)})\) coincides with

$$\begin{aligned} I_0(X)\otimes K_0(Y), \end{aligned}$$

where \(I_0(X)\) is the kernel of the rank homomorphism \(K_0(X)\longrightarrow {\mathbb {Z}}\).

The kernel of the second homomorphism in the sequence (6.1) is generated by the classes of closed integral subschemes \(Z\subset X\times Y\) that are not dominant over \(X\). By Riemann–Roch (see [11]), we have \([Z]=-c_2\bigl ([O_Z]\bigr )\) in \({\mathrm{CH }}^2(X\times Y)\), where \(c_i:K_0(X\times Y)\longrightarrow {\mathrm{CH }}^i(X\times Y)\) is the \(i\)th Chern class map. As

$$\begin{aligned}{}[O_Z]\in {\mathrm{Ker }}(K_0(X\times Y)\longrightarrow K_0(Y_{F(X)})\bigr )=I_0(X)\otimes K_0(Y), \end{aligned}$$

it suffices to to show that \(c_2\bigl (I_0(X)\otimes K_0(Y)\bigr )\) is contained in the image \(M\) of the first map in the sequence (6.1).

The formula \(c_2(x+y)=c_2(x)+c_1(x)c_1(y)+c_2(y)\) shows that it suffices to prove that for all \(a,a'\in I_0(X)\) and \(b,b'\in K_0(Y)\), the elements \(c_1(ab)\cdot c_1 (a'b')\) and \(c_2(ab)\) are contained in \(M\). This follows from the formulas (see [8, Remark 3.2.3 and Example 14.5.2]): \(c_1(ab)=mc_1(a)+nc_1(b)\) and

$$\begin{aligned} c_2(ab)=\frac{m^2-m}{2}c_1(a)^2+mc_2(a)+(nm-1)c_1(a)c_1(b)+\frac{n^2-n}{2}c_1(b)^2+nc_2(b), \end{aligned}$$

where \(n=\mathrm{rank }(a)\) and \(m=\mathrm{rank }(b)\). \(\square \)

Example 6.4

If \(Y\) is a projective homogeneous variety, then the condition \((1)\) holds by [25]. If \(X\) is a projective homogeneous variety of a semisimple algebraic group \(G\) over \(F\) and the Tits algebras of \(G\) are split, then it follows from [25] that the condition \((2)\) also holds for any \(Y\). For example, if the even Clifford algebra of a nondegenerate quadratic form is split, then the corresponding projective quadric \(X\) satisfies \((2)\) for any \(Y\).

For any field extension \(K/F\), let \(K^s\) denote the subfield of elements that are algebraic and separable over \(F\).

Proposition 6.5

Suppose that for every field extension \(K/F\) we have:

  1. (1)

    The natural map \({\mathrm{CH }}^1(X)\longrightarrow {\mathrm{CH }}^1(X_K)\) is an isomorphism,

  2. (2)

    The natural map \({\mathrm{CH }}^1(Y_{K^s})\rightarrow {\mathrm{CH }}^1(Y_K)\) is an isomorphism.

Then the sequence (6.1) is exact.

Proof

Consider the spectral sequence

$$\begin{aligned} E_1^{p,q}(F)=\coprod _{x\in X^{(p)}} A^q(Y_{F(x)},K_{2-p})\Longrightarrow A^{p+q}(X\times Y,K_2) \end{aligned}$$
(6.2)

for the projection \(X\times Y\longrightarrow X\). The nonzero terms of the first page are the following:

As in the proof of Proposition 6.1, we have \(E_2^{2,0}(F)={\mathrm{CH }}^2(X)\). For a field extension \(K/F\), write \(C(K)\) for the factor group

$$\begin{aligned} {\mathrm{Ker }}\bigl ({\mathrm{CH }}^2(X_K\times Y_K)\longrightarrow {\mathrm{CH }}^2(Y_{K(X)})\bigr )/\mathfrak {I}\bigl ({\mathrm{CH }}^2(X_K)\longrightarrow {\mathrm{CH }}^2(X_K\times Y_K)\bigr ). \end{aligned}$$

The spectral sequence (6.2) for the varieties \(X_K\) and \(Y_K\) over \(K\) yields an isomorphism \(C(K)\simeq E_2^{1,1}(K)\). We have a natural composition

$$\begin{aligned} {\mathrm{CH }}^1(X_K)\otimes {\mathrm{CH }}^1(Y_K)\longrightarrow E_1^{1,1}(K)\longrightarrow E_2^{1,1}(K)\simeq C(K). \end{aligned}$$

We claim that the group \(C(F)\) is generated by images of the compositions

$$\begin{aligned} {\mathrm{CH }}^1(X_K)\otimes {\mathrm{CH }}^1(Y_K)\longrightarrow C(K)\overset{N_{K/F}}{\longrightarrow } C(F) \end{aligned}$$

over all finite separable field extensions \(K/F\) (here \(N_{K/F}\) is the norm map for the extension \(K/F\)).

The group \(C(F)\) is generated by images of the maps

$$\begin{aligned} \varphi _x:{\mathrm{CH }}^1(Y_{F(x)})\longrightarrow E_2^{1,1}(F)\simeq C(F) \end{aligned}$$

over all points \(x\in X^{(1)}\). Pick such a point \(x\) and let \(K:=F(x)^s\) be the subfield of elements that are separable over \(F\). Then \(K/F\) is a finite separable field extension. Let \(x'\in X_K^{(1)}\) be a point over \(x\) such that \(K(x')\simeq F(x)\). Then \(\varphi _x\) coincides with the composition

$$\begin{aligned} {\mathrm{CH }}^1(Y_{K(x')})\longrightarrow C(K)\overset{N_{K/F}}{\longrightarrow } C(F). \end{aligned}$$

By assumption, the map \({\mathrm{CH }}^1(Y_{K})\longrightarrow {\mathrm{CH }}^1(Y_{K(x')})\) is an isomorphism, hence the image of \(\varphi _x\) coincides with the image of

$$\begin{aligned}{}[x']\otimes {\mathrm{CH }}^1(Y_K)\longrightarrow C(K)\overset{N_{K/F}}{\longrightarrow } C(F), \end{aligned}$$

whence the claim.

As \({\mathrm{CH }}^1(X)\longrightarrow {\mathrm{CH }}^1(X_K)\) is an isomorphism for every field extension \(K/F\), the projection formula shows that the map \({\mathrm{CH }}^1(X)\otimes {\mathrm{CH }}^1(Y)\longrightarrow C(F)\) is surjective. The statement follows. \(\square \)

Example 6.6

Let \(Y\) be a projective homogeneous variety with the \(F\)-algebras \(E\) and \(A\) as in Example 6.2. If \(A\) is split, then \({\mathrm{CH }}^1(Y_K)=K_0(E\otimes K)\) for every field extension \(K/F\). As \(K^s\) is separably closed in \(K\), the natural map \(K_0(E\otimes K^s)\longrightarrow K_0(E\otimes K)\) is an isomorphism, therefore, the condition \((2)\) holds.

Write \(\widetilde{{\mathrm{CH }}}^2(X\times Y)\) for the cokernel of the product map \({\mathrm{CH }}^1(X)\otimes {\mathrm{CH }}^1(Y)\longrightarrow {\mathrm{CH }}^2(X\times Y)\). We have the following commutative diagram:

Proposition 6.1 gives conditions for the exactness of the row in the diagram and Propositions 6.3 and 6.5—for the exactness of the column in the diagram.

A diagram chase yields together with Propositions 6.1, 6.3 and 6.5 yields the following statements.

Theorem 6.7

Let \(X\) and \(Y\) be smooth complete geometrically irreducible varieties such that for every field extension \(K/F\):

  1. (1)

    The natural map \({\mathrm{CH }}^1(X)\longrightarrow {\mathrm{CH }}^1(X_K)\) is an isomorphism of torsion free groups,

  2. (2)

    The natural map \({\mathrm{CH }}^2(X)\longrightarrow {\mathrm{CH }}^2(X_K)\) is injective,

  3. (3)

    The product map \({\mathrm{CH }}^1(X_K)\otimes K^\times \longrightarrow A^1(X_K,K_2)\) is an isomorphism,

  4. (4)

    The Grothendieck group \(K_0(Y)\) is torsion-free,

  5. (5)

    The product map \(K_0(X)\otimes K_0(Y)\longrightarrow K_0(X\times Y)\) is an isomorphism.

Then the natural map \({\mathrm{CH }}^2(Y)\longrightarrow {\mathrm{CH }}^2(Y_{F(X)})\) is injective.

Remark 6.8

The conditions (1)–(3) hold for a smooth projective quadric \(X\) of dimension at least \(7\) by [14, Theorem 6.1] and Example 6.2. By Example 6.4, the conditions \((4)\) and \((5)\) hold if the even Clifford algebra of \(X\) is split and \(Y\) is a projective homogeneous variety.

Theorem 6.9

Let \(X\) and \(Y\) be smooth complete geometrically irreducible varieties such that for every field extension \(K/F\):

  1. (1)

    The natural map \({\mathrm{CH }}^1(X)\longrightarrow {\mathrm{CH }}^1(X_K)\) is an isomorphism of torsion free groups,

  2. (2)

    The natural map \({\mathrm{CH }}^2(X)\longrightarrow {\mathrm{CH }}^2(X_K)\) is injective,

  3. (3)

    The product map \({\mathrm{CH }}^1(X_K)\otimes K^\times \longrightarrow A^1(X_K,K_2)\) is an isomorphism,

  4. (4)

    The natural homomorphism \({\mathrm{CH }}^1(Y_{K^s})\rightarrow {\mathrm{CH }}^1(Y_K)\) is an isomorphism.

Then the natural map \({\mathrm{CH }}^2(Y)\longrightarrow {\mathrm{CH }}^2(Y_{F(X)})\) is injective.

Remark 6.10

The conditions (1)–(3) hold for a smooth projective quadric \(X\) of dimension at least \(7\) and a projective homogeneous variety \(Y\) with the split Azumaya algebra by Remark 6.8 and Example 6.6.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barry, D. Decomposable and indecomposable algebras of degree \(8\) and exponent 2. Math. Z. 276, 1113–1132 (2014). https://doi.org/10.1007/s00209-013-1236-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-013-1236-8

Keywords

Navigation