Skip to main content
Log in

Schur algebras of Brauer algebras, II

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

A classical problem of invariant theory and of Lie theory is to determine endomorphism rings of representations of classical groups, for instance of tensor powers of the natural module (Schur–Weyl duality) or of full direct sums of tensor products of exterior powers (Ringel duality). In this article, the endomorphism rings of full direct sums of tensor products of symmetric powers over symplectic and orthogonal groups are determined. These are shown to be isomorphic to Schur algebras of Brauer algebras as defined in Henke and Koenig (Math Z 272(3–4):729–759, 2012). This implies structural properties of the endomorphism rings, such as double centraliser properties, quasi-hereditary, and a universal property, as well as a classification of simple modules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamovich, A.M., Rybnikov, G.L.: Tilting modules for classical groups and Howe duality in positive characteristic. Transform. Groups 1(1–2), 1–34 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brauer, R.: On algebras which are connected with the semisimple continuous groups. Ann. Math. 38, 854–872 (1937)

    Article  MathSciNet  Google Scholar 

  3. Brown, W.P.: The semisimplicity of \(\omega _f^n\). Ann. Math. 63, 324–335 (1956). (2)

    Article  MATH  Google Scholar 

  4. Brundan, J.: Dense orbits and double cosets. Algebraic groups and their representations (Cambridge, 1997), 259–274, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 517, Kluwer Acad. Publ., Dordrecht (1998)

  5. Carter, R., Lusztig, G.: On the modular representations of the general linear and symmetric groups. Math. Z. 136, 193–242 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cline, E., Parshall, B., Scott, L.: Finite-dimensional algebras and highest weight categories. J. Reine Angew. Math. 391, 85–99 (1988)

    MATH  MathSciNet  Google Scholar 

  7. Cline, E., Parshall, B., Scott, L.: Algebraic stratification in representation categories. J. Algebra 117, 504–521 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. De Concini, C., Procesi, C.: A characteristic free approach to invariant theory. Adv. Math. 21(3), 330–354 (1976)

    Article  MATH  Google Scholar 

  9. Dipper, R., Doty, S., Hu, J.: Brauer’s centralizer algebras, symplectic Schur algebras, and Schur–Weyl duality. Trans. Am. Math. Soc. 360, 189–213 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dlab, V., Ringel, C.M.: Quasi-hereditary algebras. Ill. J. Math. 33, 280–291 (1989)

    MATH  MathSciNet  Google Scholar 

  11. Donkin, S.: On Schur algebras and related algebras, I. J. Algebra 104(2), 310–328 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  12. Donkin, S.: On Schur algebras and related algebras, II. J. Algebra 111(2), 354–364 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  13. Donkin, S.: On tilting modules for algebraic groups. Math. Z. 212(1), 39–60 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Donkin, S.: On tilting modules and invariants for algebraic groups. Finite-dimensional algebras and related topics (Ottawa, ON, 1992), 59–77, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 424, Kluwer Acad. Publ., Dordrecht (1994)

  15. Donkin, S.: The q-Schur Algebra. London Mathematical Society Lecture Note Series, 253. Cambridge University Press, Cambridge, x+179 pp. (1998)

  16. Donkin, S., Tange, R.: The Brauer algebra and the symplectic Schur algebra. Math. Z. 265, 187–219 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Doty, S., Hu, J.: Schur–Weyl duality for orthogonal groups. Proc. Lond. Math. Soc. 98, 679–713 (2009). (3)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fang, M., Koenig, S.: Schur functors and dominant dimension. Trans. Am. Math. Soc. 363(3), 1555–1576 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Goodman, R., Wallach, N.: Representations and Invariants of the Classical Groups. Encyclopedia of Mathematics and its Applications, 68. Cambridge University Press, Cambridge, xvi+685 pp. (1998)

  20. Green, J.A.: Polynomial Representations of \({\text{ GL }}_{n}\). Lecture Notes in Mathematics, vol. 830. Springer, Berlin (1980)

  21. Hartmann, R., Henke, A., Koenig, S., Paget, R.: Cohomological stratification of diagram algebras. Math. Ann. 347, 765–804 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hartmann, R., Paget, R.: Young modules and filtration multiplicities for Brauer algebras. Math. Z 254, 333–357 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hemmer, D., Nakano, D.: Specht filtrations for Hecke algebras of type A. J. Lond. Math. Soc. 69, 623–638 (2004). (2)

    Article  MATH  MathSciNet  Google Scholar 

  24. Henke, A., Koenig, S.: Schur algebras of Brauer algebras, I. Math. Z. 272(3–4), 729–759 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Henke, A., Paget, R.: Brauer algebras with parameter \(n=2\) acting on tensor space. Algebra Represent. Theory 11(6), 545–575 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Koenig, S., Slungard, I.H., Xi, C.C.: Double centralizer properties, dominant dimension, and tilting modules. J. Algebra 240, 393–412 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Koenig, S., Xi, C.C.: A characteristic free approach to Brauer algebras. Trans. Am. Math. Soc. 353, 1489–1505 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  28. Lehrer, G., Zhang, R.: The Brauer category and invariant theory. Preprint, arXiv:1207.5889

  29. Liu, Q.: Schur algebras of classical groups. J. Algebra 301, 867–887 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Liu, Q.: Schur algebras of classical groups II. Commun. Algebra 38, 2656–2676 (2010)

    Article  MATH  Google Scholar 

  31. Oehms, S.: Centralizer coalgebras, FRT-construction, and symplectic monoids. J. Algebra 244, 19–44 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  32. Ringel, C.M.: The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences. Math. Z. 208, 209–223 (1991)

    Article  MathSciNet  Google Scholar 

  33. Rouquier, R.: q-Schur algebras and complex reflection groups. Mosc. Math. J. 8, 119–158 (2008)

    MATH  MathSciNet  Google Scholar 

  34. Schur, I.: Über die rationalen Darstellungen der allgemeinen linearen Gruppe. Sitzungsberichte Akad. Berlin 1927, 58–75 (1927). (Reprinted as: I.Schur, Gesammelte Abhandlungen III, 68–85). Springer, Berlin (1973)

  35. Tange, R.: The symplectic ideal and a double centraliser theorem. J. Lond. Math. Soc. 77(3), 687–699 (2008). (2)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Koenig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henke, A., Koenig, S. Schur algebras of Brauer algebras, II. Math. Z. 276, 1077–1099 (2014). https://doi.org/10.1007/s00209-013-1233-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-013-1233-y

Keywords

Navigation