Skip to main content
Log in

On the mod-Gaussian convergence of a sum over primes

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We prove mod-Gaussian convergence for a Dirichlet polynomial which approximates \({\mathrm{Im }}\log \zeta (1/2+it)\). This Dirichlet polynomial is sufficiently long to deduce Selberg’s central limit theorem with an explicit error term. Moreover, assuming the Riemann hypothesis, we apply the theory of the Riemann zeta-function to extend this mod-Gaussian convergence to the complex plane. From this we obtain that \({\mathrm{Im }}\log \zeta (1/2+it)\) satisfies a large deviation principle on the critical line. Results about the moments of the Riemann zeta-function follow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, G.E., Askey, R., Roy, R.: Special Functions, Encyclopedia of Mathematics and Its Applications 71. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  2. Bombieri, E., Hejhal, D.A.: On the distribution of zeros of linear combinations of Euler products. Duke Math. J. 80, 821–862 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Davenport, H.: Multiplicative Number Theory, 3rd edn. Springer, New York (2000)

    MATH  Google Scholar 

  4. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, corrected reprint of the 2nd edn. Springer, Berlin (2010)

  5. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 2, 2nd edn. Wiley, New York (1971)

    MATH  Google Scholar 

  6. Freitag, E., Busam, R.: Complex Analysis. Springer, Berlin (2005)

    MATH  Google Scholar 

  7. Ghosh, A.: On the Riemann zeta-function-mean value theorems and the distribution of \(|S(T)|\). J. Number Theory 17, 93–102 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  8. Goldston, D.A.: On the function \(S(T)\) in the theory of the Riemann zeta-function. J. Number Theory 27, 149–177 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gonek, S.M., Hughes, C.P., Keating, J.P.: A hybrid Euler-Hadamard product for the Riemann zeta function. Duke Math. J. 136, 507–549 (2007)

    MATH  MathSciNet  Google Scholar 

  10. Jacod, J., Kowalski, E., Nikeghbali, A.: Mod-Gaussian convergence: new limit theorems in probability and number theory. Forum Math. 23, 835–873 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Joyner, D.: Distribution Theorems of L-Functions. Longman Scientific/Wiley, Harlow/New York (1986)

    MATH  Google Scholar 

  12. Keating, J.P., Snaith, N.C.: Random matrix theory and \(\zeta (1/2+it)\). Commun. Math. Phys. 214, 57–89 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kowalski, E., Nikeghbali, A.: Mod-Gaussian convergence and the value distribution of \(\zeta (1/2+it)\) and related quantities. J. London Math. Soc. (to appear). Preprint available at http://arxiv.org/abs/0912.3237

  14. Laurinčikas, A.: Limit Theorems for the Riemann Zeta-Function. Kluwer, Dordrecht (1996)

    Book  Google Scholar 

  15. Radziwiłł, M.: Large deviations in Selberg’s central limit theorem. (preprint). http://arxiv.org/abs/1108.5092

  16. Ramachandra, K.: On the Mean-Value and Omega-Theorems for the Riemann Zeta-Function. Tata Institute of Fundamental Research Lectures on Mathematics and Physics, 85. Published for the Tata Institute of Fundamental Research, Bombay, Springer (1995)

  17. Selberg, A.: On the remainder in the formula for \(N(T)\), the number of zeros of \(\zeta (s)\) in the strip \(0 < t < T\). Avh. Norske Vid. Akad. Oslo I 1944 (1), 27 (1944)

  18. Selberg, A.: Contributions to the theory of the Riemann zeta-function. Arch. Math. Naturvid. 48, 89–155 (1946)

    Google Scholar 

  19. Selberg, A.: Old and new conjectures and results about a class of Dirichlet series. In: Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori 1989), pp. 367–385. University of Salerno, Salerno (1992)

  20. Soundararajan, K.: Moments of the Riemann zeta function. Ann. Math. 170, 981–993 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Tsang, K.M.: The Distribution of the values of the Riemann Zeta-Function. Ph.D. thesis, Princeton University (1984)

Download references

Acknowledgments

Finally, I sincerely would like to thank Prof. Ashkan Nikeghbali and Prof. Emmanuel Kowalski for their support and guidance during the preparation of this paper. Thanks also to the referee for comments leading to improvements in the presentation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Wahl.

Appendices

Appendix 1: Selberg’s result

In this appendix we briefly discuss Selberg’s result about the rate of convergence in the central limit theorem of \({\mathrm{Im }}\log \zeta (1/2+it)\) (see [19, Theorem 2] and [21, Theorem 6.2]). From Theorem 1 we deduce:

Lemma 2

Let \(x=e^{\log T/N}\) and \(N\) such that \(x\rightarrow \infty \) and \(N/\log \log T\rightarrow \infty \) as \(T\rightarrow \infty \). Suppose further that \(N/\log \log T=O(\log \log T)\). Then

$$\begin{aligned}&\sup _{a<b}\left( \ \frac{1}{T}\lambda \left( \Big \{t\in [T,2T]:\frac{1}{\sqrt{(\log \log x +\gamma )/2}}\sum _{p\le x}\frac{\sin (t\log p)}{\sqrt{p}}\in [a,b]\Big \}\right) \right. \nonumber \\&\quad \left. -\int \limits _a^be^{-t^2/2}\frac{dt}{\sqrt{2\pi }}\ \right) =O(1/\sqrt{\log \log T}). \end{aligned}$$
(8.1)

Proof

We denote by \(\varPhi _n(u)\) the left hand side of (1.3). Using [5], XVI.3, formula 3.13] we can bound the left hand side of (8.1) by

$$\begin{aligned} \frac{2}{\pi }\int \limits _{-c\sqrt{\log \log x}}^{c\sqrt{\log \log x}} e^{-u^2/2}|(\varPhi _n(u/\sqrt{(\log \log x +\gamma )/2})-1)/u|du+O\left( \frac{1}{c\sqrt{\log \log x}}\right) . \end{aligned}$$
(8.2)

An inspection of the proof of Proposition 2 combined with (4.2) shows that \(\varPhi _n(u)=\varPhi (u)(1+O(1/\log x))+O(1/\log T), \,|u|\le c\). If we choose \(c>0\) such that \(\varPhi (u)\) has no zeros for \(|u|\le c\), we obtain \(\varPhi _n(u)=\varPhi (u)(1+O(1/\log x)), \,|u|\le c\). On the other hand, we have \(\varPhi (u/\sqrt{(\log \log x +\gamma )/2})=1+O(u^2/\log \log x), \, |u|\le c\sqrt{\log \log x}\). Plugging in these estimates gives that (8.2) is \(O(1/\sqrt{\log \log x})\). From \(N/\log \log T=O(\log \log T)\) we conclude that \(\log \log T/\log \log x\rightarrow 1\) and this completes the proof. \(\square \)

This lemma combined with the bound (see [21, Lemma 6.2])

$$\begin{aligned} |\{t\in [T,2T]:|r_{1,x}(t)|\ge c'\log \log \log T\}|=O(1/\sqrt{\log \log T}), \end{aligned}$$

where \(c'>0\) is a constant, yields Selberg’s result

$$\begin{aligned}&\sup _{a<b}\Bigg (\ \frac{1}{T}\lambda \Big (\Big \{t\in [T,2T]: \frac{{\mathrm{Im }}\log \zeta (1/2+it)}{\sqrt{(\log \log T)/2}}\in [a,b]\Big \}\Big )\\&\quad -\int \limits _a^be^{-t^2/2}\frac{dt}{\sqrt{2\pi }}\ \Bigg )=O\bigg (\frac{\log \log \log T}{\sqrt{\log \log T}}\bigg ). \end{aligned}$$

Appendix 2: Mean value estimates

For completeness we present some standard mean value estimates which we applied in the proof of Corollary 2 (see [17, Lemma 3] and [20, Lemma 3]). For this purpose let \(x\) and \(y\) be positive real numbers, \(a_p\) and \(b_p\) be complex numbers with \(|a_p|\le 1\) and \(|b_p|\le \log p/\log x\), and \(k\) be a nonnegative integer. By repeating the arguments in the proof of Proposition 1, we obtain

$$\begin{aligned}&\frac{1}{T}\int \limits _T^{2T}\bigg |\sum _{p\le x}{\frac{a_p}{p^{1+2it}}}\bigg |^{2k}dt \le k!\Big (\sum _{p\le x}\frac{1}{p^2}\Big )^k+2D k!(\pi (x))^k/T,\\&\frac{1}{T}\int \limits _T^{2T}\bigg |\sum _{y< p\le x}{\frac{a_p}{p^{1/2+it}}}\bigg |^{2k}dt \le k!\Big (\sum _{y< p\le x}\frac{1}{p}\Big )^k+2D k!(\pi (x)-\pi (y))^k/T,\\&\frac{1}{T}\int \limits _T^{2T}\bigg |\sum _{p\le x}{\frac{b_p}{p^{1/2+it}}}\bigg |^{2k}dt \le k!\frac{1}{(\log x)^k}\Big (\sum _{p\le x}\frac{\log p}{p}\Big )^k+2D k!(\pi (x))^k/T. \end{aligned}$$

If \(x\le T^{1/k}\), the first and the third term are bounded by \((Ak)^k\) and the second by \((k(\log \log x-\log \log y+A))^k, \,A>0\) some constant.

For example, we obtain for a function \(|g(u)|\le 1\)

$$\begin{aligned}&\frac{1}{T}\int \limits _T^{2T}\bigg | \frac{1}{\log T^{1/V}}\sum _{n\le T^{1/V}}\frac{\varLambda (n)}{n^{1/2+it}}g\left( \frac{\log n}{\log T^{1/V}}\right) \bigg |^{2\lfloor V\rfloor }dt\nonumber \\&\quad =\frac{1}{T}\int \limits _T^{2T}\bigg |\sum _{p\le T^{1/V}}{\frac{b_p}{p^{1/2+it}}}+\sum _{p^2\le T^{1/V}}{\frac{a_p}{p^{1+2it}}}+O(1)\bigg |^{2\lfloor V\rfloor }dt\nonumber \\&\quad \le 3^{2V}\big ((AV)^V+(AV)^V+O(1)^V\big ). \end{aligned}$$
(9.1)

Appendix 3: Large deviation theory

In this appendix we give the definition of the large deviation principle and state two important results which we used in the proofs of Corollary 2 and 3 (see [4]).

A function \(I:\mathbb{R }\rightarrow [0,\infty ]\) is called a rate function (resp. good rate function), if for all \(\alpha \in [0,\infty )\), the sets \(\{x:I(x)\le \alpha \}\) are closed (resp. compact). A family \(\{Z_\epsilon \}\) of real-valued random variables satisfies the large deviation principle with the speed \(\epsilon \) and the rate function \(I\), if

  1. (a)

    For any closed set \(F\subseteq \mathbb{R }\)

    $$\begin{aligned} \limsup _{\epsilon \rightarrow 0}\epsilon \log \mathbb{P }(Z_\epsilon \in F)\le -\inf _{x\in F}I(x). \end{aligned}$$
  2. (b)

    For any open set \(G\subseteq \mathbb{R }\)

    $$\begin{aligned} \liminf _{\epsilon \rightarrow 0}\epsilon \log \mathbb{P }(Z_\epsilon \in G)\ge -\inf _{x\in G}I(x). \end{aligned}$$

Theorem 3

(Gärtner-Ellis, see Theorem 2.3.6 or 4.5.20 in [4]) Suppose that for each \(\lambda \in \mathbb{R }\)

$$\begin{aligned} \varLambda (\lambda ):=\lim _{\epsilon \rightarrow 0}\epsilon \log \mathbb{E }\big [ e^{\lambda Z_{\epsilon }/\epsilon }\big ] \end{aligned}$$

exists and that \(\varLambda \) is differentiable. Then the family \(\{Z_\epsilon \}\) satisfies the large deviation principle with the good rate function \(I(x)=\sup _{\lambda \in \mathbb{R }}(\lambda x-\varLambda (\lambda ))\).

Theorem 4

(Varadhan, see Theorem 4.3.1 in [4]) Suppose that \(\{Z_\epsilon \}\) satisfies the large deviation principle with a good rate function \(I\) and let \(h\in \mathbb{R }\). Assume further that for some \(\gamma >1\)

$$\begin{aligned} \limsup _{\epsilon \rightarrow 0}\epsilon \log \mathbb{E }\big [ e^{\gamma h Z_{\epsilon }/\epsilon }\big ]<\infty . \end{aligned}$$
(10.1)

Then

$$\begin{aligned} \lim _{\epsilon \rightarrow 0}\epsilon \log \mathbb{E }\big [ e^{h Z_{\epsilon }/\epsilon }\big ]=\sup _{x\in \mathbb{R }}(xh-I(x)). \end{aligned}$$

Definition 1

(see Definition 4.2.10 in [4]) Let \(\{Z_\epsilon \}\) and \(\{{\tilde{Z}}_\epsilon \}\) be two families of real-valued random variables, defined on the same probability space. Then \(\{Z_\epsilon \}\) and \(\{{\tilde{Z}}_\epsilon \}\) are called exponentially equivalent if for each \(\delta >0,\)

$$\begin{aligned} \limsup _{\epsilon \rightarrow 0}\epsilon \log \mathbb{P }(|Z_\epsilon -{\tilde{Z}}_\epsilon |>\delta )=-\infty . \end{aligned}$$
(10.2)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wahl, M. On the mod-Gaussian convergence of a sum over primes. Math. Z. 276, 635–654 (2014). https://doi.org/10.1007/s00209-013-1216-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-013-1216-z

Keywords

Mathematics Subject Classification (2000)

Navigation