Mathematische Zeitschrift

, Volume 276, Issue 1–2, pp 571–610

Bridgeland’s stabilities on abelian surfaces

Article

Abstract

In this paper, we shall study the structure of walls for Bridgeland’s stability conditions on abelian surfaces. In particular, we shall study the structure of walls for the moduli spaces of rank 1 complexes on an abelian surface with the Picard number 1.

Mathematics Subject Classification (1991)

14D20 

References

  1. 1.
    Arcara, D., Bertram, A.: Bridgeland-stable moduli spaces for \(K\)-trivial surfaces. arXiv:0708.2247. J. Eur. Math. Soc. 15, 1–38 (2013)Google Scholar
  2. 2.
    Bayer, A.: Polynomial bridgeland stability conditions and the large volume limit. arXiv:0712.1083. Geom. Topol. 13(4), 2389–2425 (2009)Google Scholar
  3. 3.
    Bridgeland, T.: Stability conditions on K3 surfaces. Duke Math. J. 141, 241–291 (2008)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Maciocia, A.: Computing the walls associated to bridgeland stability conditions on projective surfaces. arXiv:1202.4587Google Scholar
  5. 5.
    Maciocia, A., Meachan, C.: Rank one bridgeland stable moduli spaces on a principally polarized abelian surface. Int. Math. Res. Notices 2013, 2054–2077 (2013). arXiv:1107.5304Google Scholar
  6. 6.
    Meachan, C.: Moduli of bridgeland-stable objects. Thesis, University of Edinburgh (2012)Google Scholar
  7. 7.
    Minamide, H., Yanagida, S., Yoshioka, K.: Fourier-Mukai transforms and the wall-crossing behavior for Bridgeland’s stability conditions. arXiv:1106.5217 v2Google Scholar
  8. 8.
    Minamide, H., Yanagida, S., Yoshioka, K.: Some moduli spaces of Bridgeland’s stability conditions. Int. Math. Res. Notices (2013). doi:10.1093/imrn/rnt126
  9. 9.
    Mukai, S.: On Fourier functors and their applications to vector bundles on abelian surfaces (in Japanese). In: The Proceeding of Daisū-kikagaku Symposium, pp. 76–93. Tohoku University, June (1979)Google Scholar
  10. 10.
    Mukai, S.: On classification of vector bundles on abelian surfaces (in Japanese). RIMS Kôkyûroku 409, 103–127 (1980)Google Scholar
  11. 11.
    Mukai, S.: Duality between \(D(X)\) and \(D(\widehat{X})\) with its application to Picard sheaves. Nagoya Math. J. 81, 153–175 (1981)MATHMathSciNetGoogle Scholar
  12. 12.
    Toda, Y.: Moduli stacks and invariants of semistable objects on K3 surfaces. Adv. Math. 217, 2736–2781 (2008) arXiv:math/0703590.Google Scholar
  13. 13.
    Yanagida, S., Yoshioka, K.: Semi-homogeneous sheaves, Fourier–Mukai transforms and moduli of stable sheaves on abelian surfaces, section 7. arXiv:0906.4603 v1Google Scholar
  14. 14.
    Yanagida, S., Yoshioka, K.: Semi-homogeneous sheaves, Fourier–Mukai transforms and moduli of stable sheaves on abelian surfaces. To appear in J. Reine Angew. Math. (available by online doi:10.1515/crelle-2011-0010)
  15. 15.
    Yoshioka, K.: Chamber structure of polarizations and the moduli of stable sheaves on a ruled surface. Int. J. Math. 7, 411–431 (1996)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Yoshioka, K.: Moduli spaces of stable sheaves on abelian surfaces. Math. Ann. 321, 817–884, math.AG/0009001 (2001)Google Scholar
  17. 17.
    Yoshioka, K.: Stability and the Fourier–Mukai transform II. Compos. Math. 145, 112–142 (2009)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Yoshioka, K.: Fourier–Mukai transform on abelian surfaces. Math. Ann. 345(3), 493–524 (2009)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Research Institute for Mathematical SciencesKyoto UniversityKyotoJapan
  2. 2.Department of Mathematics, Faculty of ScienceKobe UniversityKobeJapan

Personalised recommendations