Skip to main content
Log in

Multiplicity theorems modulo \(p\) for \(\mathbf{GL }_{2}({\mathbf{Q}}_p)\)

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let \(F\) be a non-archimedean local field, \(\pi \) an admissible irreducible \(\mathbf{GL }_{2}(F)\)-representation with complex coefficients. For a quadratic extension \(L/F\) and an \(L^{\times }\)-character \(\chi \) a classical result of Tunnell and Saito establish a precise connection between the dimension of the Hom-space \(\hbox {Hom}_{L^{\times }}\big (\pi \vert _{L^{\times }},\chi \big )\) and the normalized local factor of the pair \((\pi ,\chi )\). The study of analogous Hom-spaces for complex valued representations has recently been generalized to \(\mathbf{GL}_n\) in Aizenbud et al. (Ann Math 172:1407–1434, 2010) and their connections with local factors have been established by work of Moeglin and Waldspurger (La conjecture locale de Gross–Prasad pour les groupes spéciaux orthogonaux: le cas général, preprint. Available at http://www.math.jussieu.fr/moeglin/gp.pdf, 2009). In this paper we approach the analogous problem in the context of the \(p\)-modular Langlands correspondence for \(\mathbf{GL }_{2}({\mathbf{Q}}_p)\). We describe the restriction to Cartan subgroups of an irreducible \(p\)-modular representation \(\pi \) of \(\mathbf{GL }_{2}({\mathbf{Q}}_p)\) and deduce generalized multiplicity results on the dimension of the Ext-spaces \(\mathrm{Ext}_{{{{\fancyscript{O}}}}_L^{\times }}^{i}\big (\pi \vert _{{{{\fancyscript{O}}}}_L^{\times }},\chi \big )\) where \({{{\fancyscript{O}}}}_L^{\times }\) is the ring of integers of a quadratic extension of \({\mathbf{Q}}_p\) and \(\chi \) a smooth character of \({{{\fancyscript{O}}}}_L^{\times }\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. We use the definition in [2]: a representation is uniserial if it admits a unique filtration whose graded pieces are irreducible.

  2. According to [17], the morphisms \(T_n^{\pm }\) should be written as \((T_n^{\pm })^{\text {neg}}\). We decided to use here the lighter notation \(T_n^{\pm }\).

  3. if we work with the categories of profinite \(k[[H]]\)-modules of finite type and discrete admissible \(k[[H]]\)-modules, the cohomological bifunctors \(\mathrm{Ext}_{H}^{i}\big (\circ ,\circ \big ), \mathrm{Tor}^{H}_{i}\big (\circ ,\circ \big )\) can be defined on the whole associated Pontryagin category. See for instance [32, Theorems 3.7.2 and 3.7.4].

References

  1. Aizenbud, A., Gourevitch, D., Rallis, S., Schiffmann, G.: Multiplicity one theorems. Ann. Math. 172, 1407–1434 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alperin, J.-L.: Local Representation Theory, Cambridge Studies in Advanced Mathematics, vol. 11. Cambridge University Press, Cambridge (1986)

    Book  Google Scholar 

  3. Ardakov, K., Brown, K.A.: Ring-theoretic properties of Iwasawa algebras: a survey. Doc. Math Extra Volume Coates, pp. 7–33 (2006)

  4. Barthel, L., Livné, R.: Irreducible modular representations of \({{{\rm GL}}_{2}}\) over a local field. Duke Math. J. 75, 261–292 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Breuil, C.: Sur quelques représentations modulaires et \(p\)-adique de \({{\bf G}}{{\bf L}}_{2}({{\bf Q}}_{p})\) I. Compositio Math. 138, 165–188 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brumer, A.: Pseudocompact algebras, profinite groups and class formation. J. Algebra 4, 442–470 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dixon, J.D., Du Sautoy, M.P.F., Mann, A., Segal, D.: Analytic pro-\(p\) Groups, Cambridge Studies in Advanced Mathematics, vol. 61. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  8. Dospinescu, G.: Actions infinitésimales dans la correspondance de Langlands locale \(p\)-adique. Ph.D thesis, École Polytechnique, Paris (2012)

  9. Emerton, M.: Ordinary parts of admissible representations of \(p\)-adic reductive groups I. Definitions and first properties. Astérisque 331, 355–402 (2010)

    MathSciNet  Google Scholar 

  10. Gross, B., Prasad, D.: On the decomposition of a representation of \({{{\rm SO}}_{n}}\) when restricted to \({{{\rm SO}}_{n-1}}\). Can. J. Math. 44(5), 974–1002 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gross, B., Prasad, D.: On irreducible representations of \({{{\rm SO}}_{2n+1}}\times {{{\rm SO}}_{2m}}\). Can. J. Math. 46(5), 930–950 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Herzig, F.: A Satake isomorphism in characteristic \(p\). Compositio Math. 147, 263–283 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jensen, C.: Les foncteurs dérivés de \(\underset{\longleftarrow }{\lim }\) et leurs applications en théorie des modules. Lect. Notes in Math., vol. 254. Springer

  14. Lazard, M.: Groupes analytiques \(p\)-adiques, Pub. Math. IHÉS 26 (1965)

  15. Moeglin, C., Waldspurger, J.-L.: La conjecture locale de Gross–Prasad pour les groupes spéciaux orthogonaux : le cas général, preprint. Available at http://www.math.jussieu.fr/moeglin/gp.pdf (2009)

  16. Morra, S.: Explicit description of irreducible \({{\bf G}}{{\bf L}}_{2}({{\bf Q}}_{p})\)-representations over \({{\overline{ F}}_{p}}\). J. Algebra 339, 252–303 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Morra, S.: Invariant elements for \(p\)-modular representations of \({{\bf G}}{{\bf L}}_{2}({{\bf Q}}_{p})\). Trans. Am. Math. Soc. (to appear)

  18. Morra, S.: On some representations of the Iwahori subgroup. J. Number Theory 132, 1074–1150 (2012a)

    Article  MATH  MathSciNet  Google Scholar 

  19. Morra, S.: Iwasawa modules with extra structure and \(p\)-modular representations of \({{{\bf GL}}_{2}}\), preprint. Available at http://www.math.univ-montp2.fr/morra/ (2012b)

  20. Neukirch, J., Schmidt, A., Wingberg, K.: Cohomology of Number Fields, Grundlehren des mathematischen Wissenschaften 323, 2nd edn. Springer, Berlin (2008)

    Google Scholar 

  21. Paskunas, V.: Extensions for supersingular representations of \({{ GL}_{2}({ Q}_{p})}\). Astérisque 331, 317–353 (2010)

    MathSciNet  Google Scholar 

  22. Prasad, D.: Trilinear forms for representations of \({{{\rm GL}}_{2}}\) and local \(\epsilon \)-factors. Compositio Math. 75(1), 1–46 (1990)

    MATH  MathSciNet  Google Scholar 

  23. Prasad, D.: On an extension of a theorem of Tunnell. Compositio Math. 94, 19–28 (1994)

    MATH  MathSciNet  Google Scholar 

  24. Prasad, D.: Ext-analogues of branching laws, preprint. Available at http://arxiv.org/abs/1306.2729v1 (2013)

  25. Ribes, L., Zalesskii, P.: Profinite groups. Ergebnisse der Mathematik und ihrer Grenzgebeite, vol. 40. Springer

  26. Raghuram, A.: Quadratic reciprocity for root numbers of \({{\rm GL}}_{2}\). Available at https://sites.google.com/site/math4raghuram/publications

  27. Saito, H.: On Tunnell’s formula for characters of \({{{\rm GL}}_{2}}\). Compositio Math. 85(1), 99–108 (1993)

    MATH  MathSciNet  Google Scholar 

  28. Schraen, B.: Sur la présentation des représentations supersingulières de \({{\bf GL}}_{2}({{\bf Q}}_{p})\), preprint. Availble at http://lmv.math.cnrs.fr/annuaire/benjamin-schraen/travaux-de-benjamin-schraen/article/travaux-et-publications (2012)

  29. Serre, J-P.: Arbres, amalgames, \({{{\rm SL}}_{2}}\). Astérisque 46 (1983)

  30. Serre, J.-P.: Sur la dimension cohomologique des groupes profinis. Topology 3, 413–320 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  31. Silberger, A.: All algebras of spherical functions defined on the two by two linear group with entries in a locally compact \(p\)-field are commutative. Proc. Am. Math. Soc. 21, 437–440 (1969)

    MATH  MathSciNet  Google Scholar 

  32. Symonds, P., Weigel, T.: Cohomology of \(p\)-adic analytic groups. In: Du Sautoy, M., Segal, D., Shalev, A. (eds.) New Horizons in pro-\(p\) groups, pp. 349–416. Birkhäuser (2000)

  33. Tunnell, J.B.: Local \(\epsilon \)-factors and characters of \({{{\rm GL}}_{2}}\). Am. J. Math. 105, 1277–1307 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  34. Waldspurger, J.-L.: Une formule intégrale reliée à la conjecture locale de Gross-Prasad. Compositio Math. 146, 1180–1290 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  35. Waldspurger, J.-L.: Une formule intégrale reliée à la conjecture locale de Gross–Prasad, \(2^{\grave{e}}me\) partie: extension aux représentations tempérées. Astérisque 346, 171–312 (2012a)

    Google Scholar 

  36. Waldspurger, J.-L.: Calcul d’une valeur d’un facteur \(\varepsilon \) par une formule intégrale. Astérisque 347, 1–102 (2012b)

    Google Scholar 

  37. Wilson, J.S.: Profinite Groups. Oxford University Press, New York (1998)

    MATH  Google Scholar 

Download references

Acknowledgments

Part of this work is issued from the author’s Ph. D. thesis, undertaken at the Laboratoire de Mathématiques de Versailles. He would like to thank his advisor Ariane Mézard for her invaluable guidance and her constant encouragements. He wish to express his deepest gratitude to Michael Harris, for his constant interest and his many precious suggestions and questions, which greatly improved the insight of the first draft of this paper. He would like to thank Florian Herzig, Tony Ly and Dipendra Prasad for very profitable discussions, and the Fields Institute and the University of Toronto where part of this work has been accomplished.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Morra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morra, S. Multiplicity theorems modulo \(p\) for \(\mathbf{GL }_{2}({\mathbf{Q}}_p)\) . Math. Z. 276, 421–456 (2014). https://doi.org/10.1007/s00209-013-1207-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-013-1207-0

Keywords

Mathematics Subject Classification (2000)

Navigation