Skip to main content
Log in

A second variation formula for Perelman’s \(\mathcal W \)-functional along the modified Kähler-Ricci flow

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We show a quite simple second variation formula for Perelman’s \(\mathcal W \)-functional along the modified Kähler-Ricci flow over Fano manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao, H.D., Hamilton, R.S., Ilmanen, T.: Gaussian densities and stability for some Ricci solitons. arXiv:math.DG/0404169

  2. Cao, H.D., Zhu, M.: On second variation of Perelman’s Ricci shrinker entropy. arXiv:1008.0842v5, to appear in Math. Ann

  3. Hamilton, R., Sesum, N.: Properties of the solutions to the conjugate heat equation. Amer. J. Math. 131(1), 153–169 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Pali, N.,: The total second variation of Perelman’s \({\cal W}\)-functional. arXiv:1201.0969, to appear in Calculus of variations and PDEs

  5. Perelman, G.,: The entropy formula for the Ricci flow and its geometric applications. arXiv:math/0211159

  6. Tian, G., Zhu, X.H.: Perelman’s W-functional and stability of Kähler-Ricci flow. arXiv:0801.3504v1

  7. Tian, G., Zhang, S., Zhang, Z.L., Zhu, X.H.: Supremum of Perelman’s Entropy and Kähler-Ricci Flow on a Fano Manifold. arXiv:1107.4018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nefton Pali.

Appendix

Appendix

1.1 The first variation of Perelman’s \(\mathcal W \) functional along the Kähler-Ricci flow

Analogues of the following evolution formulas were obtained by Perelman [5] in the Ricci flow case. For notation convenience we denote by \((g_t)_{t \geqslant 0}\) the Kähler-Ricci flow and with \(\omega _t\) the corresponding symplectic forms.

Theorem 2

(Perelman) Let \(X\) be a Fano manifold and let \(f\) be a solution of the conjugate heat equation

$$\begin{aligned} 2 \dot{f} = - \Delta f + | \nabla f|^2 + 2 n - \mathrm{Scal } , \end{aligned}$$
(18)

along the Kähler-Ricci flow \((g_t)_{t \geqslant 0}\), over a time interval \(\left[ 0, T \right] \). Then the function

$$\begin{aligned} 2 H :=2 \Delta f - | \nabla f|^2 + \mathrm{Scal } + 2 f - 2 n , \end{aligned}$$

satisfies the evolution equation

$$\begin{aligned} 2 \dot{H} = - \Delta H + 2 \nabla H \cdot \nabla f + | \mathrm{Ric } + i \partial \overline{\partial } f - \omega _t |^2 + | \nabla ^{1, 0} \partial f|^2 , \end{aligned}$$
(19)

over the time interval \(\left[ 0, T \right] \). Moreover on this interval hold the variation formula

$$\begin{aligned} \frac{d}{dt} \mathcal W (g_t, f_t) = \int \limits _X \Big [ | \mathrm{Ric } + i \partial \overline{\partial } f - \omega _t |^2 + | \nabla ^{1, 0} \partial f|^2 \Big ] e^{- f} d V_{g_t}. \end{aligned}$$
(20)

Proof

We remind first that for any function \(f \in C^{\infty } (X \times \mathbb R _{\geqslant 0} , \mathbb R )\) hold the evolution formulas along the Kähler-Ricci flow

$$\begin{aligned} \frac{\partial }{\partial t} | \nabla f|^2&= - | \nabla f|^2 + \mathrm{Ric } (\nabla f, J \nabla f) + 2 \nabla \dot{f} \cdot \nabla f , \end{aligned}$$
(21)
$$\begin{aligned} \Delta | \nabla f|^2&= 2 \nabla \Delta f \cdot \nabla f + 2 | \nabla ^{1, 0} \partial f|^2 + 2 | \partial \overline{\partial } f|^2 \nonumber \\&\quad + 2 \mathrm{Ric } (\nabla f, J \nabla f) , \end{aligned}$$
(22)
$$\begin{aligned} \frac{\partial }{\partial t} \Delta f&= - \Delta f + \left\langle \mathrm{Ric }, i \partial \overline{\partial } f \right\rangle + \Delta \dot{f}. \end{aligned}$$
(23)

We remind also that the scalar curvature evolves by the formula

$$\begin{aligned} 2 \frac{\partial }{\partial t} \mathrm{Scal } = \Delta \mathrm{Scal } + 2 | \mathrm{Ric } |^2 - 2 \mathrm{Scal }. \end{aligned}$$
(24)

Furthermore we observe the identity

$$\begin{aligned} 2 H = \Box f + 2 f . \end{aligned}$$
(25)

By using the evolution Eq. (23) we get the equality

$$\begin{aligned} \Box \Delta f&= \Delta ^2 f + 2 \Delta f - 2 \left\langle \mathrm{Ric }, i \partial \overline{\partial } f \right\rangle - 2 \Delta \dot{f}\\&= \Delta \Box f + 2 \Delta f - 2 \left\langle \mathrm{Ric }, i \partial \overline{\partial } f \right\rangle \\&= 2 \Delta H - 2 \left\langle \mathrm{Ric }, i \partial \overline{\partial } f \right\rangle , \end{aligned}$$

thanks to the identity (25). Moreover if we combine the evolution Eqs. (21) and (22) we obtain

$$\begin{aligned} \Box | \nabla f|^2&= 2 \nabla \Box f \cdot \nabla f + 2 | \nabla ^{1, 0} \partial f|^2 + 2 | \partial \overline{\partial } f|^2 + 2 | \nabla f|^2\\&= 4 \nabla H \cdot \nabla f + 2 | \nabla ^{1, 0} \partial f|^2 + 2 | \partial \overline{\partial } f|^2 - 2 | \nabla f|^2 , \end{aligned}$$

thanks to the identity (25). We infer the expressions

$$\begin{aligned} 2 \Box H&= 2 \Box \Delta f - \Box | \nabla f|^2 + \Box \mathrm{Scal } + 2 \Box f\\&= 4 \Delta H - 4 \left\langle \mathrm{Ric }, i \partial \overline{\partial } f \right\rangle \\&\quad - 4 \nabla H \cdot \nabla f - 2 | \nabla ^{1, 0} \partial f|^2 - 2 | \partial \overline{\partial } f|^2 + 2 | \nabla f|^2\\&\quad - 2 | \mathrm{Ric } |^2 + 2 \mathrm{Scal } + 4 H - 4 f\\&= 4 \Delta H + 4 \Delta f + 4 \mathrm{Scal } - 4 \left\langle \mathrm{Ric }, i \partial \overline{\partial } f \right\rangle - 4 \nabla H \cdot \nabla f\\&\quad - 2 | \nabla ^{1, 0} \partial f|^2 - 2 | \partial \overline{\partial } f|^2 - 2 | \mathrm{Ric } |^2 - 4 n\\&= 4 \Delta H - 4 \nabla H \cdot \nabla f\\&\quad - 2 (B - 2 \Delta f + 2 n - 2 \mathrm{Scal }). \end{aligned}$$

where

$$\begin{aligned} B : = | \nabla ^{1, 0} \partial f|^2 + | \partial \overline{\partial } f|^2 + 2 \left\langle \mathrm{Ric }, i \partial \overline{\partial } f \right\rangle + | \mathrm{Ric } |^2. \end{aligned}$$

Arranging the terms by means of the trivial identity \(\mathrm{Tr }_{\omega _t} \alpha = \left\langle \omega _t, \alpha \right\rangle \), with \(\alpha \) a real \((1, 1)\)-form, we obtain the evolution equation

$$\begin{aligned} 2 \Box H&= 4 \Delta H - 4 \nabla H \cdot \nabla f\\&\quad - 2 | \mathrm{Ric } + i \partial \overline{\partial } f - \omega _t |^2 - 2 | \nabla ^{1, 0} \partial f|^2 , \end{aligned}$$

which implies the evolution formula (19). We remind now that the evolution Eq. (18) rewrites as \(\Box ^{*} e^{- f} = 0\). Thus time deriving the identity

$$\begin{aligned} \mathcal W (g_t, f_t) = \int \limits _X 2 H e^{- f} d V_g , \end{aligned}$$

we infer

$$\begin{aligned} \frac{d}{dt} \mathcal W (g_t, f_t)&= - \int \limits _X \Box H e^{- f} d V_{g} , \end{aligned}$$

which implies Perelman’s variation formula (20). \(\square \)

1.2 Local expression of the complex anti-linear part of the Hessian

Let \((X, J, \omega )\) be a Kähler manifold and \(u \in C^2 (X, \mathbb R )\). Let \((z_1, \ldots , z_n)\) be \(J\)-holomorphic coordinates and consider the local expression

$$\begin{aligned} \overline{\partial }_{{T_{X, J}}} \nabla _g u = A_{k, \bar{l}} \bar{\zeta }_l^{*} \otimes \zeta _k + \overline{A_{k, \bar{l}}} \zeta _l^{*} \otimes \bar{\zeta }_k , \end{aligned}$$

where \(\zeta _k : = \frac{\partial }{\partial z_k}\). We want to find the expression of the coefficients \(A_{k, \bar{l}}\) with respect to \(u\). For this purpose we consider the identities

$$\begin{aligned} \nabla _g u = \nabla ^{1, 0}_{g, J} u + \nabla ^{0, 1}_{g, J} u \end{aligned}$$

and

$$\begin{aligned} \nabla ^{1, 0}_{g, J} u \lnot \omega = i \overline{\partial }_{J} u. \end{aligned}$$

If we write locally \(\nabla ^{1, 0}_{g, J} u = \xi _k \zeta _k\) then the last identity writes locally as

$$\begin{aligned} \frac{i}{2} \omega _{l, \bar{k}} \xi _l \bar{\zeta }_k^{*} = i ( \bar{\zeta }_k. u) \bar{\zeta }_k^{*}. \end{aligned}$$

We infer the expression \(\xi _l = 2 \omega ^{k, \bar{l}} \bar{\zeta }_k . u\). Moreover by the definition of the operator \(\overline{\partial }_{{T_{X, J}}}\) hold the identities

$$\begin{aligned} A_{k, \bar{l}} \zeta _k = \left[ \left( \overline{\partial }_{{T_{X, J}}} \nabla _g u \right) \bar{\zeta }_l \right] ^{1, 0}_{{J_t}} = \left[ \bar{\zeta }_l , \nabla ^{1, 0}_{g, J} u \right] ^{1, 0}_{{J_t}} = ( \bar{\zeta }_l . \xi _k) \zeta _k . \end{aligned}$$

We infer the expressions

$$\begin{aligned} A_{k, \bar{l}}&= \bar{\zeta }_l. \xi _k = 2 \bar{\zeta }_l . \left( \omega ^{r, \bar{k}} \bar{\zeta }_r. u \right) \\&= 2 \omega ^{p, \bar{k}} \left[ \bar{\zeta }_l. \bar{\zeta }_p. u - \left( \bar{\zeta }_l . \omega _{j, \bar{p}} \right) \omega ^{r, \bar{j}} \bar{\zeta }_r . u \right] . \end{aligned}$$

1.3 Comparison of norms on \(T_{{X, J}}\)-valued forms

Let \((X, J, g)\) be a hermitian manifold. Let \(\omega : = g J\) and let \(h^{*}\) be the corresponding hermitian metric over the complex vector bundle \(T^{*}_{{X, J}}\). With respect to a local complex frame \((\zeta _k)_k \subset T_{{X, J}}^{1, 0}\) we have the expression

$$\begin{aligned} h^{*} = 4 \sum _{k, l} \omega ^{l \bar{k}} \zeta _k \otimes \bar{\zeta }_l. \end{aligned}$$

We remind that if \((V, J)\) is a complex vector space equipped with a hermitian metric \(h\) then the corresponding hermitian metric \(h_{\mathbb{C }}\) over the complexified vector space \((V \otimes _{\mathbb{R }} \mathbb C , i)\) is defined by the formula

$$\begin{aligned} 2 h_{\mathbb{C }} (v, w) : = h (v, \overline{w}) + \overline{h ( \overline{v}, w)}, v, w \in V \otimes _{\mathbb{R }} \mathbb C , \end{aligned}$$

where we still note by \(h\) the \(\mathbb C \)-linear extension of \(h\). Thus \(h_{\mathbb{C }}\) coincides with the sesquilinear extension over \(V \otimes _{\mathbb{R }} \mathbb C \) of the Riemannian metric associated to \(h\). We infer by the expression (31) in [4] of the Riemannian metric on the exterior products that the induced hermitian product on the vector bundle \(\Lambda ^{p, q}_J T^{*}_X\) is given by the formula

$$\begin{aligned}&\Big \langle \Lambda _{j = 1}^p \alpha _{1, j} \wedge \Lambda _{j = 1}^q \beta _{1, j} , \Lambda _{j = 1}^p \alpha _{2, j} \wedge \Lambda _{j = 1}^q \beta _{2, j} \Big \rangle \\&\quad = (p + q) ! \det \left( 2^{- 1} h^{*} (\alpha _{1, j}, \bar{\alpha }_{2, l}) \right) \overline{\det \left( 2^{- 1} h^{*} ( \bar{\beta }_{1, j}, \beta _{2, l}) \right) }. \end{aligned}$$

Consider now an element

$$\begin{aligned} A \in T^{*}_{{X, - J}} \otimes _{\mathbb{C }} T_{{X, J}} \cong \Lambda ^{0, 1}_J T^{*}_X \otimes _{\mathbb{C }} T_{{X, J}} , \end{aligned}$$

and let \((e_k)_k \subset T_{{X, J}}, e_k :=\zeta _k + \bar{\zeta }_k\) be the \(J\)-complex basis associated to \((\zeta _k)_k\). Then hold the local expression

$$\begin{aligned} A = A_{k, \bar{l}} \bar{\zeta }^{*}_l \otimes _{J} e_k = A_{k, \bar{l}} \bar{\zeta }^{*}_l \otimes \zeta _k + \mathrm{Conjugate }. \end{aligned}$$

Assume from now on that the frame \((e_k)_k\) is \(h\)-orthonormal. On one side if one think of \(A\) as an element in \(\mathrm{End }_{\mathbb{R }} (T_X)\) then

$$\begin{aligned} |A|^2_g = \mathrm{Tr }_{\mathbb{R }} \left( A A_g^T \right) = 2 |A_{k, \bar{l}} |^2 , \end{aligned}$$

since

$$\begin{aligned} A_g^T = A_{l, \bar{k}} \bar{\zeta }^{*}_l \otimes \zeta _k + \mathrm{Conjugate }. \end{aligned}$$

On the other side

$$\begin{aligned} |A|^2_{\omega } \equiv |A|_{\Lambda _J^{0, 1} T^{*}_X \otimes _{\mathbb{C }} T_{X, J}, \omega }^2&= \left\langle A_{k, \bar{l}} \bar{\zeta }^{*}_l , A_{k, \bar{p}} \bar{\zeta }^{*}_p \right\rangle \\&= \frac{1}{2} \overline{h^{*} \left( \overline{A}_{k, \bar{l}} \zeta ^{*}_l , A_{k, \bar{p}} \bar{\zeta }^{*}_p \right) }\\&= \frac{1}{2} |A_{k, \bar{l}} |^2 \cdot 4 , \end{aligned}$$

Thus \(|A|^2_g = |A|^2_{\omega }.\) The same identity hold true for any

$$\begin{aligned} A \in T^{*}_{{X, J}} \otimes _{\mathbb{C }} T_{{X, J}} \cong \Lambda ^{1, 0}_J T^{*}_X \otimes _\mathbb{C } T_{{X, J}}. \end{aligned}$$

In higher degrees there is a multiplicative factor involved. We consider for example \(A \in \Lambda ^{1, 1}_J T^{*}_X \otimes _\mathbb{C } T_{{X, J}}\) and its local expression

$$\begin{aligned} A = i A_{p, k, \bar{l}} \left( \zeta _p^{*} \wedge \bar{\zeta }_l^{*} \right) \otimes \zeta _k + \mathrm{Conjugate }. \end{aligned}$$

Then

$$\begin{aligned} |A|_{\Lambda _J^{1, 1} T^{*}_X \otimes _\mathbb{C } T_{X, J}, \omega }^2&= \left\langle i A_{p, k, \bar{l}} \zeta _p^{*} \wedge \bar{\zeta }_l^{*} , i A_{r, k, \bar{h}} \zeta _r^{*} \wedge \bar{\zeta }_h^{*} \right\rangle \\&= A_{p, k, \bar{l}} \overline{A}_{r, k, \bar{h}} \left\langle \zeta _p^{*} \wedge \bar{\zeta }_l^{*} , \zeta _r^{*} \wedge \bar{\zeta }_h^{*} \right\rangle \\&= \frac{1}{2} |A_{p, k, \bar{l}} |^2 h^{*} \left( \zeta _p^{*} , \bar{\zeta }_p^{*} \right) \overline{h^{*} \left( \zeta _l^{*} , \bar{\zeta }_l^{*} \right) }\\&= 8 |A_{p, k, \bar{l}} |^2. \end{aligned}$$

On the other side if we think of \(A\) as an element of \(\Lambda ^2 T_X \otimes _\mathbb{R } T_X\) then

$$\begin{aligned} |A|_{\Lambda ^2 T_X \otimes _\mathbb{R } T_X, g}^2&= \mathrm{Tr }_\mathbb{R } \left[ \left( e_r \lnot A \right) \left( e_r \lnot A \right) _g^T \right] \\&\quad + \mathrm{Tr }_{\mathbb{R }} \left[ \left( J e_r \lnot A \right) \left( J e_r \lnot A \right) _g^T \right] , \end{aligned}$$

and

$$\begin{aligned} e_r \lnot A&= i A_{r, k, \bar{l}} \bar{\zeta }_l^{*} \otimes \zeta _k - i A_{l, k, \bar{r}} \zeta _l^{*} \otimes \zeta _k + \mathrm{Conjugate } ,\\ J e_r \lnot A&= - A_{r, k, \bar{l}} \bar{\zeta }_l^{*} \otimes \zeta _k - A_{l, k, \bar{r}} \zeta _l^{*} \otimes \zeta _k + \mathrm{Conjugate } ,\\ \left( e_r \lnot A \right) _g^T&= i A_{r, l, \bar{k}} \bar{\zeta }_l^{*} \otimes \zeta _k + i \overline{A}_{k, l, \bar{r}} \zeta _l^{*} \otimes \zeta _k + \mathrm{Conjugate } ,\\ \left( J e_r \lnot A \right) _g^T&= - A_{r, l, \bar{k}} \bar{\zeta }_l^{*} \otimes \zeta _k - \overline{A}_{k, l, \bar{r}} \zeta _l^{*} \otimes \zeta _k + \mathrm{Conjugate }. \end{aligned}$$

(By conjugate we mean the complex conjugate of all therms preceding this word). Thus hold the equality

$$\begin{aligned} \mathrm{Tr }_{\mathbb{R }} \left[ \left( e_r \lnot A \right) \left( e_r \lnot A \right) _g^T \right] = 2 |A_{l, k, \bar{r}} |^2 = \mathrm{Tr }_\mathbb{R } \left[ \left( J e_r \lnot A \right) \left( J e_r \lnot A \right) _g^T \right] . \end{aligned}$$

We infer the identity

$$\begin{aligned} 2 |A|_{\Lambda ^2 T_X \otimes _\mathbb{R } T_X, g}^2 = |A|_{\Lambda _J^{1, 1} T^{*}_X \otimes _\mathbb{C } T_{X, J}, \omega }^2. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pali, N. A second variation formula for Perelman’s \(\mathcal W \)-functional along the modified Kähler-Ricci flow. Math. Z. 276, 173–189 (2014). https://doi.org/10.1007/s00209-013-1192-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-013-1192-3

Keywords

Navigation