Skip to main content
Log in

Solution of a \(q\)-difference Noether problem and the quantum Gelfand–Kirillov conjecture for \(\mathfrak gl _N\)

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

It is shown that the \(q\)-difference Noether problem for all classical Weyl groups has a positive solution, simultaneously generalizing well known results on multisymmetric functions of Mattuck (Proc Am Math Soc 19:764–765, 1968) and Miyata (Nagoya Math J 41:69–73, 1971) in the case \(q=1\), and \(q\)-deforming the noncommutative Noether problem for the symmetric group (Futorny et al. in Adv Math 223:773–796, 2010). It is also shown that the quantum Gelfand–Kirillov conjecture for \(\mathfrak gl _N\) (for a generic \(q\)) follows from the positive solution of the \(q\)-difference Noether problem for the Weyl group of type \(D_n\). The proof is based on the theory of Galois rings (Futorny and Ovsienko in J Algebra 324:598–630, 2010). From here we obtain a proof of the quantum Gelfand–Kirillov conjecture for \(\mathfrak gl _N\), and for a certain extension of \(\mathfrak sl _N\). Previously, the case of \(\mathfrak sl _N\) was shown by Fauquant-Millet (J Algebra 218:93–116, 1999) and by Alev and Dumas (J Algebra 170:229–265, 1994) (for \(N=2,3\)). Moreover, we give an explicit description of the skew fields of fractions for \(U_q(\mathfrak gl _N)\) and \(U_q^\mathrm{ext}(\mathfrak sl _N)\) which generalizes the results of Alev and Dumas (J Algebra 170:229–265, 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alev, J., Dumas, F.: Sur le corps des fractiones de certaines algebres quantiques. J. Algebra 170, 229–265 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alev, J., Dumas, F.: Opérateurs différentiels invariants et problème de Noether, Studies in Lie theory, 2150, Progr. Math., 243, Birkhäuser Boston, Boston, MA (2006)

  3. Alev, J., Ooms, A., Van den Bergh, M.: A class of counterexamples to the Gelfand–Kirillov conjecture. Trans. Am. Math. Soc. 348, 1709–1716 (1996)

    Article  MATH  Google Scholar 

  4. Alev, J., Ooms, A., Van den Bergh, M.: The Gelfand–Kirillov conjecture for Lie algebras of dimension at most eight. J. Algebra 227, 549–581 (2000). Corrigendum. J. Algebra 230, 749 (2000)

    Google Scholar 

  5. Borho, W., Gabriel, P., Rentschler, R.: Primideale in Einhullenden auflosbarer Lie-Algebren. Lecture Notes in Math., vol. 357. Springer, Berlin and New York (1973)

  6. Bracken, A., Gould, M., Zhang, R.: Quantum group invariants and link polynomials. Commun. Math. Phys. 137, 13–27 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brown, K.A., Goodearl, K.R.: Lectures on Algebraic Quantum Groups, Advance Course in Math. CRM Barcelona, vol. 2. Birkhauser, Basel (2002)

    Google Scholar 

  8. Caldero, P.: On the Gelfand–Kirillov conjecture for quantum algebras. Proc. AMS 128, 943–951 (1999)

    Article  MathSciNet  Google Scholar 

  9. Cauchon, G.: Effacement des dérivations et spectres premiers des algèbres quantiques. J. Algebra 260, 476–518 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dumas, F.: An Introduction to Noncommutative Polynomial Invariants. Lecture Notes, Homological Methods and Representations of Non-commutative Algebras. Mar del Plata, Argentina March 6–17 (2006)

  11. Farkas, D., Schofield, A., Snider, R., Stafford, J.: The isomorphism question for division rings of group rings. Proc. AMS 85, 327–330 (1982)

    MATH  MathSciNet  Google Scholar 

  12. Fauquant-Millet, F.: Quantification de la localisation de de Dixmier de \(U(sl_{n+1}(\mathbb{C}))\). J. Algebra 218, 93–116 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Futorny, V., Molev, A., Ovsienko, S.: The Gelfand–Kirillov Conjecture and Gelfand-Tsetlin modules for finite \(W\)-algebras. Adv. Math. 223, 773–796 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Futorny, V., Ovsienko, S.: Galois orders in skew monoid rings. J. Algebra 324, 598–630 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Goodearl K.R.: Prime spectra of quantized coordinate rings. In: Interactions Between Ring Theory and Representations of Algebras (Murcia). Lecture Notes in Pure and Appl. Math., vol. 210, pp. 205–237. Dekker, New York (2000)

  16. Gelfand, IMet, Kirillov, A.A.: Sur les corps liés cor aux algèbres enveloppantes des algèbres de Lie. Publ. Inst. Hautes Sci. 31, 5–19 (1966)

    Article  MathSciNet  Google Scholar 

  17. Iohara, K., Malikov, F.: Rings of skew polynomials and Gelfand–Kirillov conjecture for quantum groups. Commun. Math. Phys. 164, 217–237 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Joseph, A.: Proof of the Gelfand–Kirillov conjecture for solvable Lie algebras. Proc. Am. Math. Soc. 45, 1–10 (1974)

    Article  MATH  Google Scholar 

  19. Joseph, A.: Sur une conjecture de Feigin. C. R. Acad. Sci. Paris Ser.I Math. 320(12) , 1441–1444 (1995)

    Google Scholar 

  20. Jordan, D.: A simple localization of the quantized Weyl algebra. J. Algebra 174, 267–281 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  21. Klimyk, A., Schmudgen, K.: Quantum Groups and Their Representations. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  22. Li, J.: The quantum Casimir operators of \(U_q(\mathfrak{gl}_n)\) and their eigenvalues. J. Phys. A: Math. Theor. 43, 345202 (2010) (9pp)

  23. Maltsiniotis, G.: Calcul Differentiel Quantique. Groupe de travail, Universite Paris VII, Paris (1992)

    Google Scholar 

  24. Mattuck, A.: The field of multisymmetric functions. Proc. Am. Math. Soc. 19, 764–765 (1968)

    MATH  MathSciNet  Google Scholar 

  25. Mazorchuk, V., Turowska, L.: On Gelfand-Zetlin modules over \(U_q(\mathfrak{gl}_n)\). Czechoslovak J. Physics 50, 139–144 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. McConnell, J.C.: Representations of solvable Lie algebras and the Gelfand–Kirillov conjecture. Proc. Lond. Math. Soc. 29, 453–484 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  27. Miyata, T.: Invariants of certain groups. 1. Nagoya Math. J. 41, 69–73 (1971)

    MATH  MathSciNet  Google Scholar 

  28. Panov, A.N.: Skew field of rational functions on \(GL_q(n, K)\). Funktsional. Anal. i Prilozhen. 28, 7577 (1994)

    Article  MathSciNet  Google Scholar 

  29. Panov, A.: Fields of fractions of quantum solvable algebras. J. Algebra 236, 110–121 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  30. Premet, A.: Modular Lie algebras and the Gelfand–Kirillov conjecture. Invent. Math. 181, 395–420 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. Richard, L.: Sur les endomorphismes des tores quantiques. Commun. Algebra 30, 5283–5306 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  32. Ueno, K., Takebayashi, T., Shibukawa, Y.: Gelfand–Tsetlin basis for \(U_q(gl(N+1))\). Lett. Math. Phys. 18, 215–221 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  33. Zhelobenko, D.: Compact Lie groups and their representations. Translations of Mathematical Monographs, AMS (1973)

Download references

Acknowledgments

The authors are grateful to Michel Van den Bergh, Fedor Malikov, Eugene Mukhin and Alan Weinstein for encouraging discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas T. Hartwig.

Additional information

The first author is grateful to the Max Planck Institute for Mathematics in Bonn for support and hospitality during his visit. The first author is supported in part by the CNPq Grant (301743/2007-0) and by the Fapesp Grant (2010/50347-9).

Appendix

Appendix

1.1 Proof of Proposition 3.1

The statement is equivalent to proving that

$$\begin{aligned}{}[P(X),P(Y)]=0 \end{aligned}$$
(8.1)

in \(C_n^q[X,Y]\). Put

$$\begin{aligned} Q_j(X)= \left( \prod _{k\in \{1,\ldots ,n\}\setminus \{j\}} \frac{X-x_k}{x_j-x_k}\right) y_j. \end{aligned}$$
(8.2)

so that \(P(X)=\sum _{i=1}^n Q_i(X)\). Observe that

$$\begin{aligned} w\big (Q_j(X)\big ) = Q_{w(j)}(X),\qquad w\in S_n. \end{aligned}$$
(8.3)

Thus, to prove (8.1), it is enough to show the following two identities:

$$\begin{aligned}{}[Q_1(X),Q_1(Y)]&= 0,\end{aligned}$$
(8.4)
$$\begin{aligned}{}[Q_1(X),Q_2(Y)]+[Q_2(X),Q_1(Y)]&= 0. \end{aligned}$$
(8.5)

Since \(y_1 x_i = q^{\delta _{i1}} x_i y_1\) we have

$$\begin{aligned} Q_1(X)Q_1(Y)&= \prod _{k=2}^n \frac{X-x_k}{x_1-x_k}y_1 \prod _{k=2}^n\frac{Y-x_k}{x_1-x_k}y_1\\&= \prod _{2\le k\le n} \frac{(X-x_k)(Y-x_k)}{(x_1-x_k)(q x_1-x_k)}y_1^2 \end{aligned}$$

which is symmetric in \(X,Y\). This proves (8.4).

Next we prove (8.5). Let

$$\begin{aligned} R_j(X)=\prod _{k=3}^n \frac{X-x_k}{x_j-x_k},\quad j=1,2. \end{aligned}$$

Then

$$\begin{aligned} Q_1(X)&= \frac{X-x_2}{x_1-x_2} R_1(X) y_1,\qquad Q_2(X)=\frac{X-x_1}{x_2-x_1} R_2(X) y_2,\\ {[}y_1, R_2(X)]&= [y_2,R_1(X)]=0, \end{aligned}$$

and

$$\begin{aligned} R_1(X)R_2(Y)=R_1(Y)R_2(X)=R_2(X)R_1(Y)=R_2(Y)R_1(X). \end{aligned}$$

We have

$$\begin{aligned}&[Q_1(X),Q_2(Y)]+[Q_2(X),Q_1(Y)]= Q_1(X)Q_2(Y)-Q_1(Y)Q_2(X)\\&\qquad + Q_2(X)Q_1(Y) - Q_2(Y)Q_1(X) \\&\quad =\frac{X-x_2}{x_1-x_2} \cdot \frac{Y-qx_1}{x_2-qx_1} R_1(X)R_2(Y) y_1y_2 -\frac{Y-x_2}{x_1-x_2} \cdot \frac{X-qx_1}{x_2-qx_1} R_1(Y)R_2(X) y_1y_2\\&\qquad + \frac{X-x_1}{x_2-x_1} \cdot \frac{Y-qx_2}{x_1-qx_2} R_2(X)R_1(Y) y_1y_2 - \frac{Y-x_1}{x_2-x_1} \cdot \frac{X-qx_2}{x_1-qx_2} R_2(Y)R_1(X) y_1y_2\\&\quad =\Bigg (\frac{(X-x_2)(Y-qx_1)-(Y-x_2)(X-qx_1)}{(x_1-x_2)(x_2-qx_1)}\\&\qquad \qquad + \frac{(X-x_1)(Y-qx_2)-(Y-x_1)(X-qx_2)}{(x_2-x_1)(x_1-qx_2)} \Bigg ) R_1(X)R_2(Y) y_1y_2 \\&\quad =\Bigg (\frac{(x_2^2-q^2x_1^2)X - (x_2-qx_1)Y}{(x_1-x_2)(x_2-qx_1)} + \frac{(x_1-qx_2)X-(x_1-qx_2)Y}{(x_2-x_1)(x_1-qx_2)}\Bigg ) R_1(X)R_2(Y)y_1y_2\\&\quad =0 \end{aligned}$$

This shows (8.5) and completes the proof that \([t_i,t_j]=0\) for all \(i,j\).

1.2 Proof of Proposition 3.7

The relation (3.15) holds by Proposition 3.1, while (3.16) holds by the definition, (3.11), of \(e_d\). Relation (3.17) is trivial for \(k=0\).

Using (3.12) and that \(w(e_k)=e_k\) for any \(w\in S_n\) we have, for any \(j,k\in \{1,\ldots ,n\}\),

$$\begin{aligned} (-1)^{j-1}\Delta \cdot t_je_k=\sum _{w\in S_n} {{\mathrm{sgn}}}(w)w\Big (x_1^{n-2}x_2^{n-3}\cdots x_{n-2} e_{n-j}^{\prime }e_k(x_1,\ldots ,x_{n-1},qx_n)y_n\Big ) \end{aligned}$$

Substituting \(y_n=t_1+x_nt_2+\cdots +x_n^{n-1}t_n\) and using that \(w(t_i)=t_i\) for all \(w\in S_n\) we get

$$\begin{aligned}&(-1)^{j-1}\Delta \cdot t_je_k \\&\quad =\sum _{i=1}^n\sum _{w\in S_n} {{\mathrm{sgn}}}(w)w\Big (x_1^{n-2}x_2^{n-3}\cdots x_{n-2} \cdot x_n^{i-1}e_{n-j}^{\prime }e_k(x_1,\ldots ,x_{n-1},qx_n)\Big )t_i. \end{aligned}$$

Write \(e_{n-j}^{\prime }\) as a sum of monomials \(x_{i_1}\cdots x_{i_{n-j}}\) and \(1\le i_1<\cdots <i_{n-j}\le n-1\). We claim that the only way to get a nonzero contribution is when \(i_r=r\) for all \(r\). Indeed, suppose \(i_r>r\) for some \(r\) chosen minimal. Then the product

$$\begin{aligned} x_1^{n-2}x_2^{n-3}\cdots x_{n-2} \cdot x_{i_1}\cdots x_{i_{n-j}}\cdot x_n^{i-1}e_k(x_1,\ldots ,x_{n-1},qx_n) \end{aligned}$$

will be fixed by the transposition \((i_r-1\;\;i_r)\). Therefore, after anti-symmetrization, the term will cancel out. In other words, the substitution \(w\mapsto w\cdot (i_r-1\;\; i_r)\) in the sum

$$\begin{aligned} \sum _{w\in S_n} {{\mathrm{sgn}}}(w)w\Big (x_1^{n-2}x_2^{n-3}\cdots x_{n-2} \cdot x_{i_1}\cdots x_{i_{n-j}}\cdot x_n^{i-1}e_k(x_1,\ldots ,x_{n-1},qx_n)\Big )t_i \end{aligned}$$

gives the same expression with opposite sign, proving it is zero. Thus, noting also that

$$\begin{aligned} e_k(x_1,\ldots ,x_{n-1},qx_n)=e_k^{\prime } + qx_n e_{k-1}^{\prime }, \end{aligned}$$

we have

$$\begin{aligned}&(-1)^{j-1}\Delta \cdot t_je_k\nonumber \\&\quad =\sum _{i=1}^n\sum _{w\in S_n} {{\mathrm{sgn}}}(w)w\Big (x_1^{n-1}\cdots x_{n-j}^j\cdot x_{n-j+1}^{j-2}\cdots x_{n-2} x_n^{i-1} (e_k^{\prime }+qx_ne_{k-1}^{\prime })\Big )t_i.\qquad \end{aligned}$$
(8.6)

The term \(i=j\): Write \(e_k^{\prime }= \sum _{1\le i_1<\cdots <i_k\le n-1} x_{i_1}\cdots x_{i_k}\). Consider

$$\begin{aligned} x_1^{n-1}\cdots x_{n-j}^j x_{n-j+1}^{j-2}\cdots x_{n-2} x_n^{j-1} \cdot x_{i_1}\cdots x_{i_k} \end{aligned}$$

An expression like this containing factors \((x_rx_{r^{\prime }})^s\) (\(r\ne r^{\prime }\)) will become zero after anti-symmetrization. If \(n-j\ge k\) there is a unique way to get a nonzero result, namely to choose \((i_1,\ldots ,i_k)=(1,2,\ldots ,k)\). If \(n-j<k\) there is no way to get nonzero result. Thus

$$\begin{aligned}&\sum _{w\in S_n} {{\mathrm{sgn}}}(w)w\Big (x_1^{n-1}\cdots x_{n-j}^j\cdot x_{n-j+1}^{j-2}\cdots x_{n-2} x_n^{j-1}e_k^{\prime }\Big ) \\&\quad ={\left\{ \begin{array}{ll} a(n,n-1,\ldots ,n-k+1,n-k-1,\ldots ,j,j-2,\ldots ,1,0,j-1),&{} j+k\le n\\ 0,&{} j+k>n \end{array}\right. } \end{aligned}$$

where \(a(i_1,\ldots ,i_n):=\sum _{w\in S_n}{{\mathrm{sgn}}}(w)w(x_1^{i_1}\cdots x_n^{i_n})\). Use that \(w(a(i_1,\ldots ,i_n))={{\mathrm{sgn}}}(w)a\) \((i_1,\ldots ,i_n)\) with

$$\begin{aligned} w=(n-j+1\quad n-j+2\quad \cdots \quad n), \end{aligned}$$

which is a cycle of length \(j\), to get

$$\begin{aligned}&a(n,n-1,\ldots ,n-k+1,n-k-1,\ldots ,j,j-2,\ldots ,1,0,j-1)\\&\quad =(-1)^{j-1}a(n,n-1,\ldots ,n-k+1,n-k-1,\ldots ,0). \end{aligned}$$

Using that the Schur function

$$\begin{aligned} s_\lambda = a(\lambda _1+n-1,\lambda _2+n-2,\ldots ,\lambda _n)/a(n-1,n-2,\ldots ,0), \end{aligned}$$

defined for a partition \(\lambda =(\lambda _1,\ldots ,\lambda _n)\), \(\lambda _1\ge \cdots \ge \lambda _n\ge 0\), satisfies \(s_{1^k0^{n-k}}=e_k\) and that \(\Delta =a(n-1,n-2,\ldots ,0)\) we get that

$$\begin{aligned}&\sum _{w\in S_n} {{\mathrm{sgn}}}(w)w\Big (x_1^{n-1}\cdots x_{n-j}^j\cdot x_{n-j+1}^{j-2}\cdots x_{n-2} x_n^{j-1}e_k^{\prime }\Big ) \nonumber \\&\quad = {\left\{ \begin{array}{ll} (-1)^{j-1} \Delta \cdot e_k, &{} j+k\le n,\\ 0,&{} j+k>n. \end{array}\right. } \end{aligned}$$
(8.7)

Similarly, if we look at the term containing \(qx_ne_{k-1}^{\prime }\), there is at most one tuple \((i_1,\ldots ,i_{k-1})\), \(1\le i_1<\cdots <i_{k-1}\le n-1\) such that the antisymmetrization of

$$\begin{aligned} qx_1^{n-1}\cdots x_{n-j}^j x_{n-j+1}^{j-2}\cdots x_{n-2}x_n^j x_{i_1}\cdots x_{i_{k-1}} \end{aligned}$$

is nonzero, namely \((i_1,\ldots ,i_{k-1})=(1,\ldots ,k-1)\) and this time, due to the presence of \(x_n^j\), it gives nonzero result if and only if \(k-1\ge n-j\) i.e. \(j+k>n\). Thus

$$\begin{aligned}&\sum _{w\in S_n} {{\mathrm{sgn}}}(w)w\Big (x_1^{n-1}\cdots x_{n-j}^j\cdot x_{n-j+1}^{j-2}\cdots x_{n-2} \cdot qx_n^je_{k-1}^{\prime }\Big ) \\&\quad ={\left\{ \begin{array}{ll} 0,&{} j+k\le n\\ qa(n,n-1,\ldots ,j+1,j-1,\ldots ,n-k+1,n-k-1,\ldots ,1,0,j),&{} j+k>n \end{array}\right. } \end{aligned}$$

To get a descending sequence inside the parenthesis we apply the cyclic permutation which places \(j\) between \(j-1\) and \(j+1\). This cycle has length \(j\), giving a factor \((-1)^{j-1}\). As before, this gives

$$\begin{aligned}&\sum _{w\in S_n} {{\mathrm{sgn}}}(w)w\Big (x_1^{n-1}\cdots x_{n-j}^j\cdot x_{n-j+1}^{j-2}\cdots x_{n-2} \cdot qx_n^je_{k-1}^{\prime }\Big ) \nonumber \\&\quad = {\left\{ \begin{array}{ll} 0,&{} j+k\le n\\ (-1)^{j-1}q \Delta \cdot e_k, &{} j+k> n,\\ \end{array}\right. } \end{aligned}$$
(8.8)

Combining (8.7) and (8.8) yields

$$\begin{aligned}&(-1)^{j-1}\Delta \cdot (t_je_k - q^{\delta _{j+k>n}} e_kt_j) \nonumber \\&\quad = \sum _{i\in \{1,\ldots ,n\}\setminus \{j\}}\sum _{w\in S_n} {{\mathrm{sgn}}}(w)w\Big (x_1^{n-1}\cdots x_{n-j}^j\cdot x_{n-j+1}^{j-2}\cdots x_{n-2} x_n^{i-1} (e_k^{\prime }+qx_ne_{k-1}^{\prime })\Big )t_i. \nonumber \\ \end{aligned}$$
(8.9)

The terms where \(i>j\): We first look at the \(e_k^{\prime }\) term in (8.9). That \(i>j\) means the exponent \(i-1\) of \(x_n\) occurs in one of the exponents in \(x_1^{n-1}x_2^{n-2}\cdots x_{n-j}^j\), namely in \(x_{n-(i-1)}^{i-1}\). Therefore \(x_{i_1}\cdots x_{i_k}\) must contain \(x_1x_2\cdots x_{n-(i-1)}\). In particular \(k\ge n-(i-1)\). The remaining factors must be \(x_{n-j+1}x_{n-j+2}\cdots \) and they cannot continue beyond \(x_{n-1}\) meaning that \(k-(n-i+1) + (n-j) \le n-1\). Thus the following inequalities are necessary conditions in order to avoid having two variables with the same exponent:

$$\begin{aligned} k\ge n-i+1,\quad \text{ and } \quad k+i-j-1\le n-1, \end{aligned}$$

i.e.

$$\begin{aligned} n-k+1\le i\le n-k+j. \end{aligned}$$

If these inequalities hold there is a unique tuple

$$\begin{aligned} (i_1,\ldots ,i_k)=(1,2,\ldots ,n-i+1, n-j+1,n-j+2,\ldots ,k+i-j-1) \end{aligned}$$

with \(1\le i_1<\cdots <i_k\le n-1\) such that

$$\begin{aligned} \sum _{w\in S_n} {{\mathrm{sgn}}}(w)w\Big (x_1^{n-1}\cdots x_{n-j}^j\cdot x_{n-j+1}^{j-2}\cdots x_{n-2}^2 x_n^{i-1} \cdot x_{i_1}\cdots x_{i_k}\Big ). \end{aligned}$$

is nonzero. With this choice we get

$$\begin{aligned}&\sum _{w\in S_n} {{\mathrm{sgn}}}(w)w\Big (x_1^{n-1}\cdots x_{n-j}^j\cdot x_{n-j+1}^{j-2}\cdots x_{n-2} x_n^{i-1} \cdot x_{i_1}\cdots x_{i_k}\Big )\nonumber \\&\quad =a(n,\ldots ,i,i-2,\ldots ,n-(k+i-j)+1,n-(k+i-j)-1,\ldots ,0,i-1)\nonumber \\&\quad = (-1)^i a(n,n-1,\ldots ,n-(k+i-j)+1,n-(k+i-j)-1,\ldots ,0) \nonumber \\&\quad = (-1)^i \Delta \cdot e_{k+i-j} \end{aligned}$$
(8.10)

where we applied the cyclic permutation \((n-i+2\;\; n-i+3\;\; \cdots \;\; n-1\;\; n)\) of length \(i-1\) in the second equality.

The argument for the term containing \(qx_1e_{k-1}^{\prime }\) is analogous, but gives an extra minus sign. Together with (8.10) one obtains that for \(i>j\) we have

$$\begin{aligned}&\sum _{w\in S_n} {{\mathrm{sgn}}}(w)w\Big (x_1^{n-1}\cdots x_{n-j}^j\cdot x_{n-j+1}^{j-2}\cdots x_{n-2} x_n^{i-1} (e_k^{\prime }+qx_ne_{k-1}^{\prime })\Big )t_i\nonumber \\&\quad ={\left\{ \begin{array}{ll} (-1)^{i+1}(q-1)\Delta \cdot e_{k+i-j}t_i,&{} n-k+1\le i\le n-k+j,\\ 0,&{}\text{ otherwise }. \end{array}\right. } \end{aligned}$$
(8.11)

The terms where \(i<j\): We look at the \(e_k^{\prime }\) term in (8.9). Necessary conditions for nonzero contribution are \(k\ge j-i\) and \(k-(j-i)\le n-j\), i.e.

$$\begin{aligned} j-k\le i \le n-k. \end{aligned}$$
(8.12)

After a similar computation as the \(i>j\) case we obtain

$$\begin{aligned}&\sum _{w\in S_n} {{\mathrm{sgn}}}(w)w\Big (x_1^{n-1}\cdots x_{n-j}^j\cdot x_{n-j+1}^{j-2}\cdots x_{n-2} x_n^{i-1} (e_k^{\prime }+qx_ne_{k-1}^{\prime })\Big )t_i\nonumber \\&\quad ={\left\{ \begin{array}{ll} (-1)^i(q-1)\Delta \cdot e_{k+i-j}t_i , &{} j-k\le i\le n-k\\ 0,&{} \text{ otherwise }. \end{array}\right. } \end{aligned}$$
(8.13)

Combining (8.13), (8.11) and (8.9) we obtain

$$\begin{aligned}&t_je_k - q^{\delta _{j+k>n}}e_kt_j =(q-1)\sum _{\begin{array}{c} i>j\\ n-k+1\le i\le n-k+j \end{array}} (-1)^{j-1+i+1} e_{k+i-j} t_i \nonumber \\&\quad + (q-1)\sum _{\begin{array}{c} i<j\\ j-k\le i\le n-k \end{array}} (-1)^{j-1+i} e_{k+i-j}t_i \end{aligned}$$
(8.14)

Making the change of summation variables \(i\mapsto i+j\) we get

$$\begin{aligned}&t_je_k - q^{\delta _{j+k>n}}e_kt_j =(q-1)\sum _{\begin{array}{c} i>0\\ n-(j+k)+1\le i\le n-k \end{array}} (-1)^{i+\delta _{i<0}} e_{k+i} t_{j+i} \nonumber \\&\quad + (q-1)\sum _{\begin{array}{c} i<0\\ -k\le i\le n-(j+k) \end{array}} (-1)^{i+\delta _{i<0}} e_{k+i}t_{j+i}. \end{aligned}$$
(8.15)

In the first sum, the condition \(i\le n-k\) is redundant since, by the notational convention, \(e_{k+i}=0\) for \(i>n-k\). Similarly, \(-k\le i\) is superfluous in the second sum. Thus we obtain (3.17).

1.3 Proof of Proposition 3.9

First note that (3.24) implies that

$$\begin{aligned}{}[T_j,E_0]&= 0,\quad \forall j\in [\![{1},{n}]\!],\end{aligned}$$
(8.16)
$$\begin{aligned}{}[T_j, E_n]_q&= 0,\quad \forall j\in [\![{1},{n}]\!]. \end{aligned}$$
(8.17)

We now prove (3.29). Let \(j\in [\![{1},{n-1}]\!]\) and \(k\in [\![{0},{n-1}]\!]\). Then the left hand side of (3.29) equals

$$\begin{aligned}&[\widetilde{E}_k, \widetilde{T}_j]_{q^{\delta _{j+k>n-1}}} = [T_{k+1}, E_jT_1T_n-(-1)^jE_0T_{n-j}T_1-(-1)^{n-j}E_nT_{n+1-j}T_n]_{q^{\delta _{j+1+k>n}}} \nonumber \\ \end{aligned}$$
(8.18)
$$\begin{aligned}&\quad =(q-1)\sum _{i\in \mathbb{Z }\setminus I(n-1-j-k)} (-1)^{i+\delta _{i<0}} E_{j+i} T_{k+1+i} T_1T_n \end{aligned}$$
(8.19)
$$\begin{aligned}&\qquad -(1-q^{\delta _{j+k+1>n}})(-1)^jE_0T_{k+1}T_{n-j}T_1\end{aligned}$$
(8.20)
$$\begin{aligned}&\qquad -(q-q^{\delta _{j+k+1>n}})(-1)^{n-j}E_nT_{k+1}T_{n+1-j}T_n. \end{aligned}$$
(8.21)

By (3.19) with \((j,k)\) replaced by \((k+1,n-j)\), the term (8.20) equals

$$\begin{aligned} -(q-1)\sum _{i\in \mathbb{Z }\setminus I(n-1-j-k)}(-1)^{j+\delta _{i<0}}E_0T_{k+1+i}T_{n-j-i}T_1. \end{aligned}$$
(8.22)

Similarly, applying (3.20) with \((j,k)\) replaced by \((k+1,n+1-j)\) shows that (8.21) is equal to

$$\begin{aligned} -(q-1)\sum _{i\in \mathbb{Z }\setminus I(n-1-j-k)}(-1)^{n-j+\delta _{i<0}}E_nT_{k+1+i}T_{n+1-j-i}T_n. \end{aligned}$$
(8.23)

Adding together (8.22), (8.23) and (8.19) gives the right hand side of (3.29). This proves (3.29).

In particular, taking \(k=0\) and \(k=n-1\) in (3.29) we get

$$\begin{aligned} T_1\widetilde{T}_j-\widetilde{T}_jT_1&= 0,\end{aligned}$$
(8.24)
$$\begin{aligned} T_n\widetilde{T}_j-q\widetilde{T}_jT_n&= 0, \end{aligned}$$
(8.25)

for all \(j\in [\![{1},{n-1}]\!]\). Using these identities, together with \([T_j,E_0]=0\) and \([T_j,E_n]_q=0\) which follow from (3.24), one can check that

$$\begin{aligned} q\widetilde{T}_j=T_1T_n\widetilde{T}_j(T_1T_n)^{-1}= T_nT_1E_j-(-1)^{j}T_1T_{n-j}E_0-(-1)^{n-j}T_nT_{n+1-j}E_n, \end{aligned}$$

proving (3.30).

That (3.28) holds is trivial from the assumption (3.22).

We now prove (3.27). Let \(j,k\in [\![{1},{n-1}]\!]\). We will bring \(\widetilde{T}_j\widetilde{T}_k\) to the normal form where all the \(E\)’s are to the left of all the \(T\)’s and prove that the resulting expression is symmetric in \(j,k\). We may assume \(j\ne k\). Using (8.24), (8.25) and (3.29), we have

$$\begin{aligned} \widetilde{T}_j\widetilde{T}_k&= (E_jT_1T_n-(-1)^jE_0T_{n-j}T_1-(-1)^{n-j}E_nT_{n+1-j}T_n)\widetilde{T}_k\nonumber \\&= qE_j\widetilde{T}_kT_1T_n-(-1)^jE_0T_{n-j}\widetilde{T}_kT_1-(-1)^{n-j}qE_nT_{n+1-j}\widetilde{T}_kT_n\nonumber \\&= qE_j\widetilde{T}_kT_1T_n\nonumber \\&\quad -(-1)^jE_0\Big (q^{\delta _{-j+k>0}}\widetilde{T}_k T_{n-j}+(q-1)\sum _{i\in \mathbb{Z }\setminus I(j-k)}(-1)^{i+\delta _{i<0}}\widetilde{T}_{k+i}T_{n-j+i}\Big )T_1\nonumber \\&\quad -(-1)^{n-j}qE_n\Big (q^{\delta _{1-j+k>0}}\widetilde{T}_kT_{n+1-j} \nonumber \\&\qquad +(q-1)\sum _{i\in \mathbb{Z }\setminus I(-1+j-k)} (-1)^{i+\delta _{i<0}} \widetilde{T}_{k+i} T_{n+1-j+i}\Big )T_n\nonumber \\&= qE_jE_kT_1^2T_n^2 - (-1)^kqE_jE_0T_{n-k}T_1^2T_n -(-1)^{n-k}qE_jE_nT_{n+1-k}T_1T_n^2\nonumber \\&\quad -(-1)^jq^{\delta _{k>j}} E_0E_kT_{n-j}T_1^2T_n +(-1)^{j+k}q^{\delta _{k>j}}E_0^2T_1^2 T_{n-k}T_{n-j} \nonumber \\&\qquad \qquad +(-1)^{n-k+j}q^{\delta _{k>j}} E_0E_nT_{n-j}T_{n+1-k}T_1T_n\nonumber \\&\quad -(-1)^j(q-1)\sum _{i\in \mathbb{Z }\setminus I(j-k)}(-1)^{i+\delta _{i<0}} E_0\Big (E_{k+i}T_1T_n \nonumber \\&\qquad \qquad -(-1)^{k+i}E_0T_{n-k-i}T_1-(-1)^{n-k-i}E_nT_{n+1-k-i}T_n\Big )T_{n-j+i}T_1\nonumber \\&\quad -(-1)^{n-j}q^{1+\delta _{k\ge j}}E_nE_k T_1T_n T_{n+1-j}T_n + (-1)^{n-j+k}q^{1+\delta _{k\ge j}}E_nE_0T_{n-k}T_1T_{n+1-j}T_n\nonumber \\&\qquad \qquad + (-1)^{2n-j-k}q^{1+\delta _{k\ge j}} E_n^2T_{n+1-k}T_n^2T_{n+1-j}\nonumber \\&\quad -(-1)^{n-j}q(q-1)\sum _{i\in \mathbb{Z }\setminus I(-1+j-k)} (-1)^{i+\delta _{i<0}}E_n\Big (E_{k+i}T_1T_n\nonumber \\&\qquad \qquad -(-1)^{k+i}E_0T_{n-k-i}T_1-(-1)^{n-k-i}E_nT_{n+1-k-i}T_n\Big )T_{n+1-j+i}T_n. \end{aligned}$$
(8.26)

We prove that all parts of this expression are symmetric in \(j,k\). The first term, containing \(E_jE_k\), is trivially symmetric.

The terms containing \(E_0^2T_1^2\). There are two terms in (8.26) containing \(E_0^2T_1^2\):

$$\begin{aligned} (-1)^{j+k}q^{\delta _{k>j}}E_0^2T_{n-k}T_{n-j}T_1^2 + (-1)^{j+k}(q-1)\sum _{i\in \mathbb{Z }\setminus I(j-k)} (-1)^{\delta _{i<0}} E_0^2T_1^2T_{n-k-i}T_{n-j+i}. \nonumber \\ \end{aligned}$$
(8.27)

Applying (3.19) with \((j,k)\) replaced by \((n-j,n-k)\) we get that (8.27) equals

$$\begin{aligned} (-1)^{j+k}E_0^2T_{n-j}T_{n-k}T_1^2 \end{aligned}$$

which is symmetric in \(j,k\).

The terms containing \(E_n^2T_n^2\).

$$\begin{aligned}&(-1)^{2n-j-k}q^{1+\delta _{k\ge j}} E_n^2T_n^2T_{n+1-k}T_{n+1-j} \nonumber \\&\quad +(-1)^{2n-j-k}q(q-1)\sum _{i\in \mathbb{Z }\setminus I(-1+j-k)} (-1)^{\delta _{i<0}} E_n^2T_n^2T_{n+1-k-i}T_{n+1-j+i} \end{aligned}$$
(8.28)

Here we can apply (3.20) with \((j,k)\) replaced by \((n+1-j,n+1-k)\) to see that (8.28) equals

$$\begin{aligned} (-1)^{j+k}q^2 E_n^2T_n^2T_{n+1-j}T_{n+1-k} \end{aligned}$$

which is symmetric in \(j,k\).

The terms containing \(E_0T_1^2T_n\).

$$\begin{aligned}&-E_0\Big ((-1)^kqE_jT_{n-k} +(-1)^jq^{\delta _{k>j}} E_0E_k T_{n-j}\nonumber \\&\quad +(-1)^j(q-1)\sum _{i\in \mathbb{Z }\setminus I(j-k)} (-1)^{i+\delta _{i<0}} E_0E_{k+i}T_{n-j+i}\Big )T_1^2T_n \end{aligned}$$
(8.29)

The parenthesis equals

$$\begin{aligned}&(-1)^kE_j T_{n-k} + (-1)^j E_kT_{n-j} \nonumber \\&\quad +(-1)^k(q-1)E_jT_{n-k} + (-1)^j(q^{\delta _{k>j}}-1)E_kT_{n-j}\nonumber \\&\quad +(-1)^j(q-1)\sum _{i\in \mathbb{Z }\setminus I(j-k)} (-1)^{i+\delta _{i<0}} E_{k+i} T_{n-j+i}. \end{aligned}$$
(8.30)

If \(j\ge k\), we can include \((-1)^k(q-1)E_jT_{n-k}\) as the term \(i=j-k\) in the sum. If \(j<k\), the term \((-1)^k(q-1)E_jT_{n-k}\) cancels the term \(i=j-k\) in the sum, and \((-1)^j(q^{\delta _{k>j}}-1)E_kT_{n-j}\) may be included in the sum as \(i=0\). Thus (8.30) can be written

$$\begin{aligned}&(-1)^kE_jT_{n-k}+(-1)^jE_kT_{n-j}\nonumber \\&\quad +(-1)^j(q-1)\sum \limits _{{i\in {\left\{ \begin{array}{ll} \mathbb{Z }\setminus [\![{0},{j-k-1}]\!],&{} j\ge k\\ \mathbb{Z }\setminus [\![{j-k},{-1}]\!],&{} j<k \end{array}\right. }}} (-1)^{i+\delta _{i<0}} E_{k+i}T_{n-j+i}. \end{aligned}$$
(8.31)

Making the change of variables \(i\mapsto i+j-k\) in this sum gives the same expression but with \(j\) and \(k\) interchanged. Thus it is symmetric in \(j\) and \(k\).

The terms containing \(E_nT_1T_n^2\).

$$\begin{aligned}&-qE_n\Big ((-1)^{n-k}E_jT_{n+1-k} +(-1)^{n-j}q^{\delta _{k\ge j}} E_k T_{n+1-j} \nonumber \\&\quad \quad +(-1)^{n-j}(q-1)\sum _{i\in \mathbb{Z }\setminus I(-1+j-k)} (-1)^{i+\delta _{i< 0}} E_{k+i} T_{n+1-j+i} \Big )T_1T_2^2 \end{aligned}$$
(8.32)

Similarly to the previous case, the expression inside the parenthesis can be written as

$$\begin{aligned}&(-1)^{n-k}q E_jT_{n+1-k} + (-1)^{n-j} q E_kT_{n+1-j}\nonumber \\&\quad +(-1)^{n-j}(q-1)\sum _{\begin{array}{c} i\in {\left\{ \begin{array}{ll} \mathbb{Z }\setminus [\![{1},{j-k}]\!],&{}j>k\\ \mathbb{Z }\setminus [\![{j-k+1},{0}]\!],&{}j\le k \end{array}\right. } \end{array}} (-1)^{i+\delta _{i\le 0}} E_{k+i}T_{n+1-j+i}.\qquad \end{aligned}$$
(8.33)

Substituting \(i\mapsto i-k+j\) one checks this is symmetric in \(j\) and \(k\).

The terms containing \(E_0E_nT_1T_n\). Finally, there are four terms in (8.26) containing \(E_0E_nT_1T_n\):

$$\begin{aligned}&E_0E_n\Big ((-1)^{n-k+j}q^{\delta _{k> j}} T_{n+1-k}T_{n-j} + (-1)^{n-j+k}q^{1+\delta _{k\ge j}} T_{n-k}T_{n+1-j}\nonumber \\&\quad + (-1)^{n-k+j}(q-1)\sum _{i\in \mathbb{Z }\setminus I(j-k)} (-1)^{\delta _{i<0}} T_{n+1-k-i}T_{n-j+i}\nonumber \\&\quad + (-1)^{n-j+k}q(q-1)\sum _{i\in \mathbb{Z }\setminus I(-1+j-k) }(-1)^{\delta _{i<0}} T_{n-k-i} T_{n+1-j+i} \Big ) T_1T_n \end{aligned}$$
(8.34)

Applying (3.19) with \((j,k)\) replaced by \((n-j+1,n-k)\) and (3.20) with \((j,k)\) replaced by \((n-j,n-k+1)\) we obtain that the parenthesis in (8.34) equals

$$\begin{aligned} (-1)^{n+j-k}qT_{n+1-k}T_{n-j} + (-1)^{n+k-j}qT_{n+1-j}T_{n-k} \end{aligned}$$

which is symmetric in \(j\) and \(k\). This completes the proof that (8.26) is symmetric in \(j\) and \(k\). Thus (3.27) holds.

The last statement about generators follows from the fact that (3.25) and (3.26) can be used to express \(E_j\) for \(j\in [\![{1},{n-1}]\!]\) and \(T_k\) for \(k\in [\![{1},{n}]\!]\), in terms of the new generators \(\{E_0,E_n\}\cup \{\widetilde{T}_j\}_{j=1}^{n-1}\cup \{\widetilde{E}_k\}_{k=0}^{n-1}\).

1.4 Example: the case \(n=2\)

If \(n=2\) then (3.3) becomes

$$\begin{aligned} y_1=t_1+x_1 t_2 ,\qquad y_2=t_1+x_2 t_2 \end{aligned}$$

and from this, or using (3.12), we get

$$\begin{aligned} t_1&= (x_1-x_2)^{-1}(x_1y_2-x_2y_1),\\ t_2&= -(x_1-x_2)^{-1}(y_2-y_1). \end{aligned}$$

By definition (3.11), we have

$$\begin{aligned} e_0=1,\quad e_1=x_1+x_2, \quad e_2=x_1x_2. \end{aligned}$$

By Corollary 3.5, \(\mathbb{k }_q(\bar{x},\bar{y})^{S_2}\) is generated as a skew field over \(\mathbb{k }\) by \(e_1,e_2, t_1, t_2\). By Proposition 3.7 we have the following relations:

$$\begin{aligned} t_1 t_2&= t_2 t_1, \\ e_1 e_2&= e_2 e_1, \\ t_1 e_2&= q e_2 t_1, \\ t_2 e_2&= q e_2 t_2, \\ t_1 e_1&= e_1 t_1 + (1-q)e_2 t_2, \\ t_2 e_1&= q e_1 t_2 + (q-1)t_1. \end{aligned}$$

Using the notation in (3.32) and (3.31) we have

$$\begin{aligned} X_1&= e_2^{(0)} = e_2, \\ X_2&= e_1^{(1)} = t_2, \\ Y_1&= e_0^{(1)} = t_1, \\ Y_2&= e_0^{(2)} = e_1^{(0)}e_0^{(1)}e_1^{(1)}+e_0^{(0)}e_0^{(1)}e_0^{(1)}+e_2^{(0)}e_1^{(1)}e_1^{(1)}\\&= e_1t_1t_2+e_0t_1^2+e_2t_2^2. \end{aligned}$$

By (3.48) or direct computations,

$$\begin{aligned} {[}Y_1,Y_2{]}&= 0,\qquad [X_2,X_1]_q =0,\\ {[}Y_1,X_2{]}&= 0,\qquad [Y_2,X_1]_{q^2} =0,\\ {[}Y_1,X_1{]}_q&= 0,\qquad [Y_2,X_2]_{q^{-1}} =0. \end{aligned}$$

Thus, \((Z_1,Z_2,Z_3,Z_4)=(X_1,Y_1,X_2,Y_2)\) satisfy \(Z_iZ_j=q^{s_{ij}}Z_jZ_i\) with

$$\begin{aligned} (s_{ij})=\left[ \begin{array}{lccc} 0 &{}\quad -1 &{}\quad -1 &{}\quad -2 \\ 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 1 &{}\quad 0 &{}\quad 0 &{}\quad 1 \\ 2 &{}\quad 0 &{}\quad -1 &{}\quad 0 \end{array}\right] . \end{aligned}$$

Using the definition (3.33),

$$\begin{aligned} \widehat{X}_1=X_1,\quad \widehat{X}_2=Y_1X_2^{-1}, \quad \widehat{Y}_1=Y_1,\quad \widehat{Y}_2=Y_1^{-2}Y_2. \end{aligned}$$

As in the proof of Theorem 3.10, \(\widehat{X}_1, \widehat{X}_2, \widehat{Y}_1,\widehat{Y}_2\) generate \(\mathbb{k }(\bar{x},\bar{y})^{S_2}\) as a skew field, the following relations hold:

$$\begin{aligned}&[\widehat{X}_1,\widehat{X}_2]=0,\qquad [\widehat{Y}_1,\widehat{Y}_2]=0,\\&\widehat{Y}_i\widehat{X}_j = q^{\delta _{ij}} \widehat{X}_j\widehat{Y}_i,\qquad \forall i,j\in \{1,2\}. \end{aligned}$$

and we have an isomorphism \(\mathbb{k }_q(x_1,x_2,y_1,y_2)^{S_2}\simeq \mathbb{k }_q(x_1,x_2,y_1,y_2)\).

1.5 Example: the case \(n=3\)

The elementary symmetric polynomials \(e_d\) are

$$\begin{aligned} e_0&= 1,\\ e_1&= x_1+x_2+x_3,\\ e_2&= x_1x_2+x_2x_3+x_3x_1,\\ e_3&= x_1x_2x_3. \end{aligned}$$

By (3.12) we have

$$\begin{aligned} t_1&= \Delta ^{-1}\cdot \big ( (x_2^2x_3-x_3^2x_2)y_1+(x_3^2x_1-x_1^2x_3)y_2+(x_1^2x_2-x_2^2x_1)y_3\big ),\\ t_2&= \Delta ^{-1}\cdot \big ( (x_2^2-x_3^2)y_1+(x_3^2-x_1^2)y_2+(x_1^2-x_2^2)y_3\big ),\\ t_3&= \Delta ^{-1}\cdot \big ( (x_2-x_3)y_1+(x_3-x_1)y_2+(x_1-x_2)y_3\big ), \end{aligned}$$

where

$$\begin{aligned} \Delta =(x_1-x_2)(x_1-x_3)(x_2-x_3). \end{aligned}$$

By Corollary  3.5, \(\mathbb{k }_q(\bar{x},\bar{y})^{S_3}\) is generated as a skew field over \(\mathbb{k }\) by \(e_1,e_2,e_3,t_1,t_2,t_3\) and by Proposition 3.7 or direct computations, we have the following relations:

$$\begin{aligned} {[}t_i,t_j{]}&= 0, \quad \forall i,j\in \{1,2,3\},\\ {[}e_i,e_j{]}&= 0,\quad \forall i,j\in \{1,2,3\},\\ {[}t_i,e_3{]}_q&= 0,\quad \forall i\in \{1,2,3\},\\ {[}t_1,e_1{]}&= (q-1)e_3 t_3,\\ {[}t_2,e_1{]}&= (q-1)(t_1 -e_2 t_3), \\ {[}t_3,e_1{]}_q&= (q-1)t_2,\\ {[}t_1,e_2{]}&= (1-q)e_3 t_2, \\ {[}t_2,e_2{]}_q&= (1-q)(e_3t_3-e_1 t_1),\\ {[}t_3,e_2{]}_q&= (1-q)t_1. \end{aligned}$$

By (3.32) and (3.31),

$$\begin{aligned} X_1&= e_3^{(0)} = e_3=x_1x_2x_3,\\ X_2&= e_2^{(1)} = t_3,\\ X_3&= e_1^{(2)} = e_2^{(0)}e_0^{(1)}e_2^{(1)}-e_0^{(0)}e_0^{(1)}e_0^{(1)}+e_3^{(0)}e_1^{(1)}e_2^{(1)}\\&= e_2t_1t_3-e_0t_1^2+e_3t_2t_3,\\ Y_1&= e_0^{(1)}=t_1,\\ Y_2&= e_0^{(2)}=e_1^{(0)}e_0^{(1)}e_2^{(1)}+e_0^{(0)}e_1^{(1)}e_0^{(1)}-e_3^{(0)}e_2^{(1)}e_2^{(1)}\\&\quad =e_1t_1t_3+e_0t_2t_1-e_3t_3^2,\\ Y_3&= e_0^{(3)}=e_1^{(1)}e_0^{(2)}e_1^{(2)}+e_0^{(1)}e_0^{(2)}e_0^{(2)}+e_2^{(1)}e_1^{(2)}e_1^{(2)}\\&\quad = t_2Y_2X_3+t_1Y_2^2+t_3X_3^2. \end{aligned}$$

By (3.48),

$$\begin{aligned} {[}Y_k,Y_i]&= 0,\quad \forall k,i\in \{1,2,3\},\\ {[}X_2,X_1]_q&= 0,\quad [X_3,X_1]_{q^2}=0,\quad [X_3,X_2]_{q^{-1}}=0,\\ {[}Y_1,X_2]&= 0,\quad [Y_1,X_3]=0,\quad [Y_2,X_3]=0,\\ {[}Y_1,X_1]_q&= 0,\quad [Y_2,X_1]_{q^2}=0,\quad [Y_3,X_1]_{q^5}=0,\\ {[}Y_2,X_2]_{q^{-1}}&= 0,\quad [Y_3,X_2]_{q^{-2}}=0,\quad \\ {[}Y_3,X_3]_q&= 0. \end{aligned}$$

Thus, if we let \((Z_1,Z_2,\ldots ,Z_6)=(X_1,Y_1,X_2,Y_2,X_3,Y_3)\), then \(Z_iZ_j=q^{s_{ij}}Z_jZ_i\) with

$$\begin{aligned} (s_{ij})=\left[ \begin{array}{lccccc} 0 &{}\quad -1 &{}\quad -1 &{}\quad -2 &{}\quad -2 &{}\quad -5 \\ 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 1 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 1 &{}\quad 2 \\ 2 &{}\quad 0 &{}\quad -1 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 2 &{}\quad 0 &{}\quad -1 &{}\quad 0 &{}\quad 0 &{}\quad -1 \\ 5 &{}\quad 0 &{}\quad -2 &{}\quad 0 &{}\quad 1 &{}\quad 0 \end{array}\right] . \end{aligned}$$
(8.35)

By performing simultaneous elementary row and column transformations, this matrix can be brought to the skew normal form

$$\begin{aligned} \left[ \begin{array}{cccccc} 0 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ -1&{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad -1 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -1 &{}\quad 0 \end{array}\right] . \end{aligned}$$
(8.36)

As in (3.33), changing generators to

$$\begin{aligned} \widehat{X}_1&= X_1,\quad \widehat{X}_2=Y_1X_2^{-1},\quad \widehat{X}_3=Y_2^{-1}X_3,\\ \widehat{Y}_1&= Y_1,\quad \widehat{Y}_2=Y_1^{-2}Y_2,\quad \widehat{Y}_3=Y_1^{-1}Y_2^{-2}Y_3. \end{aligned}$$

one can also verify directly that

$$\begin{aligned}{}[\widehat{X}_i,\widehat{X}_j]&= [\widehat{Y}_i,\widehat{Y}_j]=0,\quad \forall i,j\in \{1,2,3\},\\ \widehat{Y}_i\widehat{X}_j&= q^{\delta _{ij}} \widehat{X}_j \widehat{Y}_i,\quad \forall i,j\in \{1,2,3\}, \end{aligned}$$

which means that there is an isomorphism of skew fields

$$\begin{aligned}&\mathbb{k }_q(\bar{x},\bar{y}) \overset{\sim }{\longrightarrow } \mathbb{k }_q(\bar{x},\bar{y})^{S_3}\\&x_i \longmapsto \widehat{X}_i,\qquad \forall i\in \{1,2,3\},\\&y_i \longmapsto \widehat{Y}_i,\qquad \forall i\in \{1,2,3\}.\\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Futorny, V., Hartwig, J.T. Solution of a \(q\)-difference Noether problem and the quantum Gelfand–Kirillov conjecture for \(\mathfrak gl _N\) . Math. Z. 276, 1–37 (2014). https://doi.org/10.1007/s00209-013-1184-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-013-1184-3

Keywords

Mathematics Subject Classification (2000)

Navigation