Skip to main content
Log in

Minimal generating and normally generating sets for the braid and mapping class groups of \(\mathbb{D }^{2}\), \(\mathbb S ^{2}\) and \(\mathbb{R P^2}\)

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We consider the (pure) braid groups \(B_{n}(M)\) and \(P_{n}(M)\), where \(M\) is the \(2\)-sphere \(\mathbb S ^{2}\) or the real projective plane \(\mathbb R P^2\). We determine the minimal cardinality of (normal) generating sets \(X\) of these groups, first when there is no restriction on \(X\), and secondly when \(X\) consists of elements of finite order. This improves on results of Berrick and Matthey in the case of \(\mathbb S ^{2}\), and extends them in the case of \(\mathbb R P^2\). We begin by recalling the situation for the Artin braid groups (\(M=\mathbb{D }^{2}\)). As applications of our results, we answer the corresponding questions for the associated mapping class groups, and we show that for \(M=\mathbb S ^{2}\) or \(\mathbb R P^2\), the induced action of \(B_n(M)\) on \(H_3(\widetilde{F_n(M)};\mathbb{Z })\) is trivial, \(F_{n}(M)\) being the \(n^\mathrm{th}\) configuration space of \(M\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artin, E.: Theorie der Zöpfe. Abh. Math. Sem. Univ. Hamburg 4, 47–72 (1925)

    Article  MATH  Google Scholar 

  2. Artin, E.: Theory of braids. Ann. Math. 48, 101–126 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berrick, A.J., Matthey, M.: Stable classical groups and strongly torsion generated groups. Comment. Math. Helvetici 84, 909–928 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berrick, A.J., Miller, C.F.: Strongly torsion generated groups. Math. Proc. Cambridge Philos. Soc. 111, 219–229 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Birman, J.S.: Mapping class groups and their relationship to braid groups. Comm. Pure Appl. Math. 22, 213–238 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  6. Birman, J.S.: Braids, links and mapping class groups. Annals of Mathematics Studies, vol. 82. Princeton University Press, Princeton (1974).

  7. Bödigheimer, C.-F., Cohen, F.R., Peim, M.D.: Mapping class groups and function spaces, Homotopy methods in algebraic topology (Boulder, CO., 1999). Contemporary Mathematics, vol. 271, pp. 17–39. American Mathematical Society, Providence (2001)

  8. Brown, K.S.: Cohomology of groups. In: Graduate Texts in Mathematics, vol. 87. Springer, New York-Berlin (1982)

  9. Cohen, F.R., Gitler, S.: On loop spaces of configuration spaces. Trans. Am. Math. Soc. 354, 1705–1748 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eilenberg, S.: Sur les transformations pèriodiques de la surface de la sphère. Fund. Math. 22, 28–41 (1934)

    Google Scholar 

  11. Fadell, E., Husseini, S.Y.: Geometry and topology of configuration spaces. In: Springer Monographs in Mathematics. Springer, Berlin (2001)

  12. Fadell, E., Van Buskirk, J.: The braid groups of \(\mathbb{E}^2\) and \(\mathbb{S}^2\), Duke Math. J. 29, 243–257 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feichtner, E.M., Ziegler, G.M.: The integral cohomology algebras of ordered configuration spaces of spheres. Doc. Math. 5, 115–139 (2000)

    MathSciNet  MATH  Google Scholar 

  14. Fox, R.H., Neuwirth, L.: The braid groups. Math. Scandinavica 10, 119–126 (1962)

    MathSciNet  MATH  Google Scholar 

  15. Gillette, R., Van Buskirk, J.: The word problem and consequences for the braid groups and mapping class groups of the \(2\)-sphere. Trans. Am. Math. Soc. 131, 277–296 (1968)

    MATH  Google Scholar 

  16. Gonçalves, D.L., Guaschi, J.: The roots of the full twist for surface braid groups. Math. Proc. Cambridge Philos. Soc. 137, 307–320 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gonçalves, D.L., Guaschi, J.: The braid groups of the projective plane. Algebraic Geom. Topol. 4, 757–780 (2004)

    Article  MATH  Google Scholar 

  18. Gonçalves, D.L., Guaschi, J.: The braid group \(B_{m, n}(\mathbb{S}^2)\) and a generalisation of the Fadell–Neuwirth short exact sequence. J. Knot Theory Ramif. 14, 375–403 (2005)

    Article  MATH  Google Scholar 

  19. Gonçalves, D.L., Guaschi, J.: The braid groups of the projective plane and the Fadell–Neuwirth short exact sequence. Geom. Dedicata 130, 93–107 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gonçalves, D.L., Guaschi, J.: Classification of the virtually cyclic subgroups of the pure braid groups of the projective plane. J. Group Theory 13, 277–294 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Gonçalves, D.L., Guaschi, J.: Surface braid groups and coverings. J. Lond. Math. Soc. 85, 855–868 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gonçalves, D.L., Guaschi, J.: The classification of the virtually cyclic subgroups of the sphere braid groups (preprint). arXiv:1110.6628

  23. González-Meneses, J., Wiest, B.: On the structure of the centralizer of a braid. Ann. Sci. École Norm. Sup. 37, 729–757 (2004)

    MATH  Google Scholar 

  24. Hansen, V.L.: Braids and coverings: selected topics. In: London Math. Society Student Text, vol. 18. Cambridge University Press, Cambridge (1989)

  25. von Kerékjártó, B.: Über die periodischen Transformationen der Kreisscheibe und der Kugelfläche. Math. Ann. 80, 36–38 (1919)

    Article  MathSciNet  MATH  Google Scholar 

  26. Magnus, W.: Über Automorphismen von Fundamentalgruppen berandeter Flächen. Math. Ann. 109, 617–646 (1934)

    Article  MathSciNet  Google Scholar 

  27. Magnus, W., Karrass, A., Solitar, D.: Combinatorial group theory, reprint of the 1976, 2nd edn. Dover Publications, Inc., Mineola NY (2004)

  28. Moran, S.: The mathematical theory of knots and braids, an introduction. In: North-Holland Mathematics Studies, vol. 82. North-Holland Publishing Co., Amsterdam (1983)

  29. Murasugi, K.: Seifert fibre spaces and braid groups. Proc. Lond. Math. Soc. 44, 71–84 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  30. Murasugi, K., Kurpita, B.I.: A study of braids. In: Mathematics and its Applications, vol. 484. Kluwer Academic Publishers, Dordrecht (1999)

  31. Scott, G.P.: Braid groups and the group of homeomorphisms of a surface. Proc. Camb. Phil. Soc. 68, 605–617 (1970)

    Article  MATH  Google Scholar 

  32. Stallings, J.: Homology and central series of groups. J. Algebra 2, 170–181 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  33. Van Buskirk, J.: Braid groups of compact \(2\)-manifolds with elements of finite order. Trans. Am. Math. Soc. 122, 81–97 (1966)

    Article  MATH  Google Scholar 

  34. Zariski, O.: The topological discriminant group of a Riemann surface of genus \(p\). Am. J. Math. 59, 335–358 (1937)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work took place during the visits of the first author to the Laboratoire de Mathématiques Nicolas Oresme, Université de Caen Basse-Normandie during the period \(5\mathrm{th}\) November–\(5\mathrm{th}\) December 2010, and of the second author to the Departmento de Matemática do IME–Universidade de São Paulo during the periods \(12\mathrm{th}\)\(25\mathrm{th}\) April and \(4\mathrm{th}\)\(26\mathrm{th}\) October 2010, and \(24\mathrm{th}\) February–\(6\mathrm{th}\) March 2011. It was supported by the international Cooperation CNRS/FAPESP project number 09/54745-1, by the ANR project TheoGar Project number ANR-08-BLAN-0269-02, and by the FAPESP ‘Projecto Temático Topologia Algébrica, Geométrica e Diferencial’ number 2008/57607-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Guaschi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonçalves, D.L., Guaschi, J. Minimal generating and normally generating sets for the braid and mapping class groups of \(\mathbb{D }^{2}\), \(\mathbb S ^{2}\) and \(\mathbb{R P^2}\) . Math. Z. 274, 667–683 (2013). https://doi.org/10.1007/s00209-012-1090-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-012-1090-0

Mathematics Subject Classification (2010)

Navigation