Skip to main content
Log in

Algebraic groups over the field with one element

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper we provide a first realization of an idea of Jacques Tits from a 1956 paper, which first mentioned that there should be a field of charactéristique une, which is now called \({\mathbb{F}_1}\), the field with one element. This idea was that every split reductive group scheme over \({\mathbb{Z}}\) should descend to \({\mathbb{F}_1}\), and its group of \({\mathbb{F}_1}\)-rational points should be its Weyl group. We connect the notion of a torified scheme to the notion of \({\mathbb{F}_1}\)-schemes as introduced by Connes and Consani. This yields models of toric varieties, Schubert varieties and split reductive group schemes as \({\mathbb{F}_1}\)-schemes. We endow the class of \({\mathbb{F}_1}\)-schemes with two classes of morphisms, one leading to a satisfying notion of \({\mathbb{F}_1}\)-rational points, the other leading to the notion of an algebraic group over \({\mathbb{F}_1}\) such that every split reductive group is defined as an algebraic group over \({\mathbb{F}_1}\). Furthermore, we show that certain combinatorics that are expected from parabolic subgroups of GL(n) and Grassmann varieties are realized in this theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Connes, A., Consani, C.: On the notion of geometry over \({\mathbb{F}_1}\). J. Algebraic Geom. (in press, 2011)

  2. Connes A., Consani C.: Schemes over \({\mathbb{F}_1}\) and zeta functions. Compos. Math. 146(6), 1383–1415 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Deitmar, A.: Schemes over \({{\mathbb F}_1}\). In: Number Fields and Function Fields—Two Parallel Worlds. Progr. Math., vol. 239, pp. 87–100 (2005)

  4. Deitmar, A.: \({{\mathbb F}_1}\)-schemes and toric varieties. Beiträge Algebra Geom. (49), 517–525 (2008)

  5. Demazure, M., Grothendieck, A.: Schémas en groupes. I: Propriétés générales des schémas en groupes. Lecture Notes in Mathematics. vol. 151 (1962/64)

  6. Demazure, M., Grothendieck, A.: Schémas en groupes. III: Structure des schémas en groupes réductifs. Lecture Notes in Mathematics, vol. 153 (1962/64)

  7. Deninger, C.: On the Γ-factors attached to motives. Invent. Math. (104), 245–261 (1991)

    Google Scholar 

  8. Deninger, C.: Local L-factors of motives and regularized determinants. Invent. Math. (107), 135–150 (1992)

    Google Scholar 

  9. Deninger, C.: Motivic L-functions and regularized determinants. In: Motives (Seattle, WA, 1991). Proc. Sympos. Pure Math., vol. 55, pp. 707–743 (1994)

  10. Kurokawa, N.: Multiple zeta functions: an example. In: Zeta Functions in Geometry (Tokyo, 1990). Adv. Stud. Pure Math., vol. 21, pp. 219–226 (1992)

  11. López Peña, J., Lorscheid, O.: Torified varieties and their geometries over \({{\mathbb F}_1}\). Mathematische Zeitschrift (2009)

  12. López Peña, J., Lorscheid, O.: Mapping \({{\mathbb F}_1}\)-land: an overview over geometries over the field with one element. Proceedings Noncommutative Geometry, Arithmetic, and Related Topics, \({{\tt arXiv:0909.0069}}\) (2009)

  13. Mac Lane, S.: Categories for the working mathematician. In: Graduate Texts in Mathematics, vol. 5. Springer-Verlag, New York (1998)

  14. Manin, Y.: Lectures on zeta functions and motives (according to Deninger and Kurokawa). Astérisque (228), 121–163 (1995)

  15. Mumford, D.: Geometric invariant theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Band 34, (1965)

  16. Soulé C.: Les variétés sur le corps à un élément. Mosc. Math. J. 4(1), 217–244 (2004)

    MathSciNet  MATH  Google Scholar 

  17. Tits, J.: Sur les analogues algébriques des groupes semi-simples complexes. In: Colloque d’algèbre supérieure, pp. 261–289. Librairie Gauthier-Villars, Paris (1957)

  18. Tits J.: Normalisateurs de tores. I. Groupes de Coxeter étendus. J. Algebra 4, 96–116 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  19. Toën, B., Vaquié, M.: Au-dessous de Spec \({\mathbb{Z}}\) Preprint, \({{\tt arXiv:math/0509684}}\) (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Lorscheid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorscheid, O. Algebraic groups over the field with one element. Math. Z. 271, 117–138 (2012). https://doi.org/10.1007/s00209-011-0855-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-011-0855-1

Keywords

Navigation