Skip to main content
Log in

Reductive group schemes over the Fargues–Fontaine curve

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

For an arbitrary non-archimedean local field we classify reductive group schemes over the corresponding Fargues–Fontaine curve by group schemes over the category of isocrystals. We then classify torsors under such reductive group schemes by a generalization of Kottwitz’ set B(G). In particular, we extend a theorem of Fargues on torsors under constant reductive groups to the case of equal characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Later we call this set \(B({\mathbb {G}})\).

  2. which is not a restriction as fiber functors take their image in vector bundles.

  3. In [17] Saavedra–Rivano calls filtered fiber functors admissible if they are fpqc-locally splittable. By [19] this notion is obsolete and thus we think that our terminology is not very confusing. Also our admissible fiber functors are not equipped with a filtration as would be the case in Saavedra–Rivano’s notation.

  4. We mention the following possible cause of confusion. If G is a reductive group over E with associated group scheme \({\mathbb {G}}\) over \(\varphi -\mathrm {Mod}_L\), then the category of finite dimensional E-representations \(\mathrm {Rep}_E(G)\) of G is the full subcategory of \(\mathrm {Rep}_E({\mathbb {G}})\) given by representations of \({\mathbb {G}}\) whose underlying isocrystal is semistable of slope 0.

References

  1. Artin, M., Bertin, J.E., Demazure, M., Gabriel, P., Grothendieck, A., Raynaud, M., Serre, J.P.: Schémas en groupes. Fasc. 7: Exposés 23 à 26, Séminaire de Géométrie Algébrique de l’Institut des Hautes Études Scientifiques, vol. 1963/64. Institut des Hautes Études Scientifiques, Paris (1965/1966)

  2. Beauville, A., Laszlo, Y.: Un lemme de descente. C. R. Acad. Sci. Paris Sér. I Math. 320(3), 335–340 (1995)

    MathSciNet  MATH  Google Scholar 

  3. Cornut, C.: Filtrations and buildings. Preprint on webpage at https://webusers.imj-prg.fr/~christophe.cornut/papers/FilBuiv3.1.pdf. Accessed 25 Feb 2017

  4. Dat, J.E., Orlik, S.: Period domains over finite and \(p\)-adic fields, Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511762482

    MATH  Google Scholar 

  5. Deligne, P.: Catégories tannakiennes. In: The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, pp. 111–195. Birkhäuser Boston, Boston, MA (1990)

  6. Fargues, L.: G-torseurs en théorie de hodge p-adique. Preprint on webpage at https://webusers.imj-prg.fr/~laurent.fargues/Prepublications.html. Accessed 25 Feb 2017

  7. Fargues, L.: Geometrization of the local Langlands correspondence: an overview. ArXiv e-prints (2016). arXiv:1602.00999

  8. Fargues, L., Fontaine, J.M.: Courbes et fibrés vectoriels en théorie de hodge p-adique. Preprint on webpage at https://webusers.imj-prg.fr/~laurent.fargues/Prepublications.html. Accessed 25 Feb 2017

  9. Grothendieck, A.: Le groupe de Brauer. III. Exemples et compléments. In: Dix exposés sur la cohomologie des schémas. Advanced studies in pure mathematics, vol. 3, pp. 88–188. North-Holland, Amsterdam (1968)

  10. Grothendieck, A.: Le groupe de Brauer. II. Théorie cohomologique [ MR0244270 (39 #5586b)]. In: Séminaire Bourbaki, Vol. 9, pp. Exp. No. 297, 287–307. Soc. Math. France, Paris (1995)

  11. Haboush, W.J.: Reductive groups are geometrically reductive. Ann. Math. (2) 102(1), 67–83 (1975). https://doi.org/10.2307/1970974

    Article  MathSciNet  MATH  Google Scholar 

  12. Hartl, U., Pink, R.: Vector bundles with a Frobenius structure on the punctured unit disc. Compos. Math. 140(3), 689–716 (2004). https://doi.org/10.1112/S0010437X03000216

    Article  MathSciNet  MATH  Google Scholar 

  13. Kottwitz, R.: B(G) for all local and global fields. ArXiv e-prints (2014). arXiv:1401.5728

  14. Kottwitz, R.E.: Stable trace formula: cuspidal tempered terms. Duke Math. J. 51(3), 611–650 (1984). https://doi.org/10.1215/S0012-7094-84-05129-9

    Article  MathSciNet  MATH  Google Scholar 

  15. Kottwitz, R.E.: Isocrystals with additional structure. Compositio Math. 56(2), 201–220 (1985). http://www.numdam.org/item?id=CM_1985__56_2_201_0

  16. Roby, N.: Lois polynomes et lois formelles en théorie des modules. Ann. Sci. École Norm. Sup. (3) 80, 213–348 (1963). http://www.numdam.org/item?id=ASENS_1963_3_80_3_213_0

  17. Saavedra Rivano, N.: Catégories Tannakiennes. Lecture Notes in Mathematics, vol. 265. Springer, Berlin, New York (1972)

    Book  MATH  Google Scholar 

  18. Tate, J.: The cohomology groups of tori in finite Galois extensions of number fields. Nagoya Math. J. 27, 709–719 (1966) http://projecteuclid.org/euclid.nmj/1118801784

  19. Ziegler, P.: Graded and filtered fiber functors on Tannakian categories. J. Inst. Math. Jussieu 14(1), 87–130 (2015). https://doi.org/10.1017/S1474748013000376

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

As the reader will have noticed this article owes a lot to Laurent Fargues’ work in [6]. Therefore the author wants to thank Laurent Fargues heartily. The author also thanks Jochen Heinloth, Michael Rapoport, Peter Scholze and Torsten Wedhorn for answering several questions related to this paper. Especially, the hint of Michael Rapoport to [4, Theorem 5.3.1.] lead to the full proof of Theorem 10 in the equal characteristic case.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Anschütz.

Additional information

Communicated by Toby Gee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anschütz, J. Reductive group schemes over the Fargues–Fontaine curve. Math. Ann. 374, 1219–1260 (2019). https://doi.org/10.1007/s00208-018-1785-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-018-1785-6

Mathematics Subject Classification

Navigation