Skip to main content
Log in

Pinned distance sets, k-simplices, Wolff’s exponent in finite fields and sum-product estimates

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

An analog of the Falconer distance problem in vector spaces over finite fields asks for the threshold α > 0 such that \({|\Delta(E)| \gtrsim q}\) whenever \({|E| \gtrsim q^{\alpha}}\), where \({E \subset {\mathbb {F}}_q^d}\), the d-dimensional vector space over a finite field with q elements (not necessarily prime). Here \({\Delta(E)=\{{(x_1-y_1)}^2+\dots+{(x_d-y_d)}^2: x,y \in E\}}\). Iosevich and Rudnev (Trans Am Math Soc 359(12):6127–6142, 2007) established the threshold \({\frac{d+1}{2}}\), and in Hart et al. (Trans Am Math Soc 363:3255–3275, 2011) proved that this exponent is sharp in odd dimensions. In two dimensions we improve the exponent to \({\tfrac{4}{3}}\), consistent with the corresponding exponent in Euclidean space obtained by Wolff (Int Math Res Not 10:547–567, 1999). The pinned distance set \({\Delta_y(E)=\{{(x_1-y_1)}^2+\dots+{(x_d-y_d)}^2: x\in E\}}\) for a pin \({y\in E}\) has been studied in the Euclidean setting. Peres and Schlag (Duke Math J 102:193–251, 2000) showed that if the Hausdorff dimension of a set E is greater than \({\tfrac{d+1}{2}}\), then the Lebesgue measure of Δ y (E) is positive for almost every pin y. In this paper, we obtain the analogous result in the finite field setting. In addition, the same result is shown to be true for the pinned dot product set \({\Pi_y(E)=\{x\cdot y: x\in E\}}\). Under the additional assumption that the set E has Cartesian product structure we improve the pinned threshold for both distances and dot products to \({\frac{d^2}{2d-1}}\). The pinned dot product result for Cartesian products implies the following sum-product result. Let \({A\subset \mathbb F_q}\) and \({z\in \mathbb F^*_q}\). If \({|A|\geq q^{\frac{d}{2d-1}}}\) then there exists a subset \({E'\subset A\times \dots \times A=A^{d-1}}\) with \({|E'|\gtrsim |A|^{d-1}}\) such that for any \({(a_1,\dots, a_{d-1}) \in E'}\),

$$ |a_1A+a_2A+\dots +a_{d-1}A+zA| > \frac{q}{2}$$

where \({a_j A=\{a_ja:a \in A\},j=1,\dots,d-1}\). A generalization of the Falconer distance problem is to determine the minimal α > 0 such that E contains a congruent copy of a positive proportion of k-simplices whenever \({|E| \gtrsim q^{\alpha}}\). Here the authors improve on known results (for k > 3) using Fourier analytic methods, showing that α may be taken to be \({\frac{d+k}{2}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal P., Sharir M.: The number of congruent simplexes in a point set. Discrete Comput. Geom. 28, 123–150 (2002)

    MathSciNet  MATH  Google Scholar 

  2. Agarwal, P.K., Apfelbaum, R., Purdy, G., Sharir, M.: Similar simplices in d-dimensional point set. Computational geometry (SCG’07), pp. 232–238. ACM, New York (2007)

  3. Bourgain J.: Mordell’s exponential sum estimate revisited. J. Am. Math. Soc. 18(2), 477–499 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourgain J., Glibichuk A., Konyagin S.: Estimates for the number of sums and products for exponentials sums in fields of prime order. J. Lond. Math. Soc. 73, 380–398 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bourgain J., Katz N., Tao T.: A sum-product estimate in finite fields, and applications. Geom. Funct. Anal. 14, 27–57 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourgain J.: A Szemerdi type theorem for sets of positive density. Isr. J. Math. 54(3), 307–331 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Covert D., Hart D., Iosevich A., Uriarte-Tuero I.: An analog of the Furstenberg-Katznelson-Weiss theorem on triangles in sets of positive density in finite field geometries. Discret. Math. 311(6), 423–430 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Croot, E.: Sums of the Form \({1/x_1^k+\dots +1/x_n^k}\) modulo a prime. Integers 4, A20, 6 p (2004)

  9. Erdoğan M.B.: A bilinear Fourier extension theorem and applications to the distance set problem. Int. Math. Res. Not. 23, 1411–1425 (2005)

    Article  Google Scholar 

  10. Falconer K.J.: On the Hausdorff dimensions of distance sets. Mathematika 32, 206–212 (1986)

    Article  MathSciNet  Google Scholar 

  11. Furstenberg, H., Katznelson, Y., Weiss, B.: Ergodic theory and configurations in sets of positive density. In: Mathematics of Ramsey Theory. Algorithms Combin., vol. 5, pp. 184–198. Springer, Berlin (1990)

  12. Glibichuk, A.: Combinatorial properties of sets of residues modulo a prime and the Erdös-Graham problem. Mat. Zametki 79, 384–395 (2006); translation in: Math. Notes 79, 356–365 (2006)

    Google Scholar 

  13. Glibichuk A., Rudnev M.: On additive properties of product sets in an arbitrary finite field. J. Anal. Math. 108, 159–170 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Glibichuk, A., Konyagin, S.: Additive properties of product sets in fields of prime order. In: Additive Combinatorics. CRM Proc. Lecture Notes, vol. 43, pp. 279–286. Amer. Math. Soc., Providence (2007)

  15. Guth, L., Katz, N.: On the Erdös distinct distance problem in the plane. Preprint (2010)

  16. Hart D., Iosevich A.: Ubiquity of simplices in subsets of vector spaces over finite fields. Anal. Math. 34, 29–38 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hart D., Iosevich A., Koh D., Rudnev M.: Averages over hyperplanes, sum-product theory in vector spaces over finite fields and the Erdős-Falconer distance conjecture. Trans. Am. Math. Soc. 363, 3255–3275 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hart, D., Iosevich, A., Koh, D., Senger, S., Uriarte-Tuero, I.: Distance graphs in vector spaces over finite fields, coloring and pseudo-randomness. (2008, submitted)

  19. Iosevich A., Koh D.: Extension theorems for the Fourier transform associated with nondegenerate quadratic surfaces in vector spaces over finite fields. Ill. J. Math. 52(2), 611–628 (2008)

    MathSciNet  Google Scholar 

  20. Iosevich A., Koh D.: Extension theorems for spheres in the finite field setting. Forum Math. 22(3), 457–483 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Iosevich A., Rudnev M.: Erdős distance problem in vector spaces over finite fields. Trans. Am. Math. Soc. 359(12), 6127–6142 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Katz, N., Tardos, G.: A new entropy inequality for the Erdös distance problem. In: Contemp. Math. Towards a Theory of Geometric Graphs, vol. 342, pp. 119–126. Amer. Math. Soc., Providence (2004)

  23. Lidl R., Niederreiter H.: Finite Fields. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  24. Magyar A.: On distance sets of large sets of integers points. Isr. J. Math. 164, 251–263 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Magyar Á.: k-point configurations in sets of positive density of \({{\mathbb{Z}}^n}\). Duke Math. J. 146(1), 1–34 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Peres Y., Schlag W.: Smoothness of projections, bernoulli convolutions, and the dimension of exceptions. Duke Math. J. 102, 193–251 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shparlinski I.: On the solvability of bilinear equations in finite fields. Glasg. Math. J. 50(3), 523–529 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Solymosi, J., Vu, V.: Near optimal bounds for the number of distinct distances in high dimensions. Combinatorica (2005)

  29. Tao T., Vu V.: Additive Combinatorics. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  30. Vinh, L.A.: On kaleidoscopic pseudo-randomness of finite Euclidean graphs. Preprint (2008)

  31. Vinh, L.A.: Triangles in vector spaces over finite fields. Preprint (2008)

  32. Wolff T.: Decay of circular means of Fourier transforms of measures. Int. Math. Res. Not. 10, 547–567 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Iosevich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chapman, J., Erdoğan, M.B., Hart, D. et al. Pinned distance sets, k-simplices, Wolff’s exponent in finite fields and sum-product estimates. Math. Z. 271, 63–93 (2012). https://doi.org/10.1007/s00209-011-0852-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-011-0852-4

Keywords

Navigation