Skip to main content
Log in

Reverse Khas’minskii condition

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

The aim of this paper is to present and discuss some equivalent characterizations of p-parabolicity for complete Riemannian manifolds in terms of existence of special exhaustion functions. In particular, Khas’minskii in Ergodic properties of recurrent diffusion prossesses and stabilization of solution to the Cauchy problem for parabolic equations (Theor Prob Appl 5(2), 1960) proved that if there exists a 2-superharmonic function \({\mathcal{K}}\) defined outside a compact set on a complete Riemannian manifold R such that \({\lim_{x\to \infty} \mathcal{K}(x)=\infty}\), then R is 2-parabolic, and Sario and Nakai in Classification theory of Riemann surfaces (Springer, Berlin, 1970) were able to improve this result by showing that R is 2-parabolic if and only if there exists an Evans potential, i.e. a 2-harmonic function \({E:R{\setminus} K \to \mathbb{R}^+}\) with \({\lim_{x\to \infty}\mathcal{E}(x)=\infty}\). In this paper, we will prove a reverse Khas’minskii condition valid for any p > 1 and discuss the existence of Evans potentials in the nonlinear case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Björn, A., Björn, J.: Boundary regularity for p-harmonic functions and solutions of the obstacle problem on metric spaces. J. Math. Soc. Japan 58(4), 1211–1232 (2006). http://projecteuclid.org/

    Google Scholar 

  2. Clarkson, J.: Uniformly Convex Spaces. Trans. Am. Math. Soc. 40(3), 396–414 (1936). http://www.jstor.org/pss/1989630

  3. Grigor’yan A.: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Am. Math. Soc. (N.S.) 36(2), 135–249 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Helms L.: Potential Theory. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  5. Heinonen J., Kilpeläinen T., Martio O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Dover, New York (2006)

    MATH  Google Scholar 

  6. Holopainen, I.: Nonlinear potential theory and quasiregular mappings on Riemannian manifolds. Annales Academiae Scientiarum Fenicae, Series A, I. Mathematica, Dissertationes no. 87 (1990)

  7. Holopainen, I.: Volume growth, Green’s functions, and parabolicity of ends. Duke Math. J. 97(2), 319–346 (1999). http://www.helsinki.fi/~iholopai/vol.html

  8. Holopainen, I.: Solutions of elliptic equations on manifolds with roughly Euclidean ends. Math. Z. 217(3), 459–477 (1994). http://www.springerlink.com/content/1r357142484251h3/

  9. Khas’minskii R.Z.: Ergodic properties of recurrent diffusion prossesses and stabilization of solution to the Cauchy problem for parabolic equations. Theor. Prob. Appl 5(2), 179–195 (1960)

    Article  MathSciNet  Google Scholar 

  10. Kilpeläinen, T.; Malỳ, J.: The Wiener test and potential estimates for quasilinear elliptic equations. Acta. Math. 172, 137–161 (1994). http://www.springerlink.com

    Google Scholar 

  11. Kinnunen, J.; Martio, O.: Nonlinear potential theory on metric spaces. IL. J. Math. 46(3), 857–883 (2002). http://projecteuclid.org/

    Google Scholar 

  12. Maz’ya, V.: On the continuity at a botmdary point of solutions of quasi-linear elliptic equations, vol. 3, pp. 225–242. Vestnik Leningrad Univ. (1976) (English translation)

  13. Nakai, M.: On Evans’ potential. Proceedings of the Japan Academy, vol.38, pp. 624–629 (1962). http://projecteuclid.org/euclid.pja/1195523234

  14. Petersen, P.: Riemannian Geometry, II edn. Graduate Text in Mathematics. Springer, Berlin. http://books.google.com/

  15. Pigola S., Rigoli M., Setti A.G.: Some non-linear function theoretic properties of Riemannian manifolds. Revista Matemàtica Iberoamericana 22(3), 801–831 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Sario L., Nakai M.: Classification Theory of Riemann Surfaces. Springer, Berlin (1970)

    MATH  Google Scholar 

  17. Tanaka, H.: Harmonic boundaries of Riemannian manifolds. Nonlinear Anal. 14(1), 55–67 (1990). http://www.sciencedirect.com/

  18. Valtorta, D., Veronelli, G.: Stokes’ Theorem, Volume Growth and Parabolicity. http://arxiv.org/abs/1005.2343

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Valtorta.

Additional information

Special thanks go to my advisor, Prof. Alberto Giulio Setti, whose assistance has proven invaluable in writing this paper. This work is partially supported by GNAMPA-INdAM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valtorta, D. Reverse Khas’minskii condition. Math. Z. 270, 165–177 (2012). https://doi.org/10.1007/s00209-010-0790-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-010-0790-6

Keywords

Mathematics Subject Classification (2000)

Navigation