Skip to main content
Log in

A generalization of Yoshida–Nicolaescu theorem using partial signatures

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We give a simplified proof of the Yoshida–Nicolaescu Theorem in the product case using the theory of partial signatures as in Giambò et al. (2004). The theorem gives the equality of the spectral flow of a family of first order self-adjoint differential operators defined on sections of a Hermitian vector bundle over a partitioned manifold and the Maslov index of the corresponding pair of Cauchy data spaces. No nondegeneracy assumption is made on the endpoints of the path of differential operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avron J., Seiler R., Simon B. (1994) The index of a pair of projections. J. Funct. Anal. 120, 220–237

    Article  MATH  MathSciNet  Google Scholar 

  2. Bleecker D., Booss-Bavnbek B. (2004) Spectral invariants of operators of Dirac type on partitioned manifolds. Aspects of boundary problems in analysis and geometry. Oper. Theory Adv. Appl. 151, 1–130

    MATH  MathSciNet  Google Scholar 

  3. Booss-Bavnbek B., Furutani K. (1998) The Maslov index: a functional analytical definition and the spectral flow formula. Tokio J. Math. 21, 1–34

    Article  MATH  MathSciNet  Google Scholar 

  4. Booss-Bavnbek B., Furutani K., Otsuki N. (2001) Criss-cross reduction of the Maslov index and a proof of the Yoshida-Nicolaescu theorem. Tokyo J. Math. 24(1): 113–128

    Article  MATH  MathSciNet  Google Scholar 

  5. Booss-Bavnbek, B., Lesch, M., Phillips, J.: Spectral flow of paths of self-adjoint Fredholm operators. Quantum gravity and spectral geometry (Napoli, 2001). Nuclear Phys. B Proc. Suppl. 104 177–180 (arxiv-math.FA/0108014, 2001) (2002)

  6. Booss-Bavnbek B., Wojciechowski K.P. (1986) Desuspension of splitting elliptic symbols II, Ann. Global Anal. Geom. 4, 349–400

    Article  MathSciNet  Google Scholar 

  7. Booss-Bavnbek B., Wojciechowski K.P. (1993) Elliptic Boundary Value Problems for Dirac Operators. Birkhäuser, Basel

    Google Scholar 

  8. Booss-Bavnbek B., Zhu C. Weak Symplectic Functional Analysis and General Spectral Flow Formula. arXiv:math.DG/0406139 (2004)

  9. Cappell S., Lee R., Miller E. (1999) Self-adjoint elliptic operators and manifold decomposition Part III: determinant line bundles and Lagrangian intersection. Commun. Pure Appl. Math. 52, 543–611

    Article  MathSciNet  Google Scholar 

  10. Daniel M. (1999) An extension of a theorem of Nicolaescu on spectral flow and Maslov index. Proc. AMS 128, 611–619

    Article  MathSciNet  Google Scholar 

  11. Furutani K. (2004) Fredholm–Lagrangian–Grassmannian and the Maslov index. J. Geom. Phys. 51(3): 269–331

    Article  MATH  MathSciNet  Google Scholar 

  12. Farber M., Levine J. (1996) Jumps of the η-invariant. Math. Z. 223, 197–246

    Article  MATH  MathSciNet  Google Scholar 

  13. Giambò R., Piccione P., Portaluri A. (2004) Computation of the Maslov index and the spectral flow via partial signatures. C. R. Math. Acad. Sci. Paris 338(5): 397–402

    MATH  MathSciNet  Google Scholar 

  14. Gohberg I., Sigal E. (1971) An operator generalization of the logarithmic residue theorem and the theorem of Rouché. Math. USSR Sbornik 13(4): 603–625

    Article  MATH  Google Scholar 

  15. Kato T. (1976) Perturbation Theory for Linear Operators. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  16. Kuiper N. The homotopy type of the unitary Group of a Hilbert space. Topology 3, 19–30 (1964–65)

    Google Scholar 

  17. Nicolaescu L. (1995) The Maslov index, the spectral flow and decompositions of manifolds. Duke Math. J. 80, 485–533

    Article  MATH  MathSciNet  Google Scholar 

  18. Palais R. (1965) Seminar on the Atiyah–Singer index Theorem. Princeton University Press, Princeton

    MATH  Google Scholar 

  19. Piccione P., Tausk D. (2005) Complementary Lagrangians in Infinite Dimensional Symplectic Hilbert Spaces, An. Acad. Brasil. Ciênc. 77(4): 589–594

    MATH  MathSciNet  Google Scholar 

  20. Rabier P.J. (1989) Generalized Jordan chains and two bifurcation theorems of Krasnosel’skii. Nonlinear Anal. 13, 903–934

    Article  MATH  MathSciNet  Google Scholar 

  21. Seeley R. Singular integrals and boundary value problems. Amer. J. Math. 88, 781–809 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  22. Yoshida T. (1991) Floer homology and splittings of manifolds. Ann. Math. 134, 227–323

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. C. Eidam.

Additional information

Research supported by Fapesp, São Paulo, Brasil, grants 01/00046-3, 04/14323-7 and 02/02528-8. The second author is partially sponsored by Cnpq, Brasil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eidam, J.C.C., Piccione, P. A generalization of Yoshida–Nicolaescu theorem using partial signatures. Math. Z. 255, 357–372 (2007). https://doi.org/10.1007/s00209-006-0029-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-006-0029-8

Mathematics Subject Classification (2000)

Navigation