Skip to main content
Log in

Dynamics of neuronal waves

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

First of all, by studying the existence and stability of traveling wave fronts of the following nonlinear nonlocal model equation

$$u_t+au_x+u=\alpha\mathop{\int}_{\mathbb R}K(x-y)H(u(y,t)-\theta){\rm d}y +\beta\mathop{\int}_{\mathbb R}K(x-y)H(u(y,t)-\Theta){\rm d}y,$$

we derive relation between speed index function and stability index function for each of the waves. This model was derived when studying working memory in synaptically coupled neuronal networks, which incorporates low persistent activity rate θ and high saturating rate Θ. We will investigate dynamics of neuronal waves. For this purpose, we will be concerned with the equation for several different kinds of symmetric and asymmetric kernels and will compare speeds of the waves. Our analysis and results on the speed index functions facilitate our investigation on stability of the waves and the estimates of speeds. Secondly, we are concerned with standing waves of the nonlinear nonhomogeneous system of integral-differential equations

$$\begin{array}{lll} u_t+u+w& =&\alpha \mathop{\int}\limits_{\mathbb R}K(x-y)H(u(y,t)-\theta){\rm d}y\\ &&+\,\beta \mathop{\int}\limits_{\mathbb R}K(x-y)H(u(y,t)-\Theta){\rm d}y+{\mathcal I}(x,t),\\ w_t&=&\varepsilon(u-\gamma w),\end{array}$$

and the scalar equation

$$\begin{array}{lll} u_t+u&=&\alpha \mathop{\int}\limits_{\mathbb R}K(x-y)H(u(y,t)-\theta){\rm d}y\\ &&+\,\beta \mathop{\int}\limits_{\mathbb R}K(x-y)H(u(y,t)-\Theta){\rm d}y+{\mathcal I}(x,t).\end{array}$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amari S.-I. (1977) Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27, 77–87

    Article  MATH  MathSciNet  Google Scholar 

  2. Bates P., Fife P., Ren X., Wang X. (1997) Traveling waves in a convolution model for phase transitions. Arch. Ration. Mech. Anal. 138, 105–136

    Article  MATH  MathSciNet  Google Scholar 

  3. Brooke Benjamin T. (1972) The stability of solitary waves. Proc. R. Soc. Lond. Ser. A 328, 153–183

    Article  Google Scholar 

  4. Bona J.L. (1975) On the stability theory of solitary waves. Proc. R. Soc. Lond. 344A, 363–374

    MathSciNet  Google Scholar 

  5. Bosking W.H., Zhang Y., Schofield B., Fitzpatrick D. (1997) Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neurosci. 17, 2112–2127

    Google Scholar 

  6. Carlen E.A., Carvalho M.C., Orlandi E. (1999) Algebraic rate of decay for the excess free energy and stability of fronts for a nonlocal phase kinetics equation with a conservation law. I. J. Stat. Phys. 95, 1069–1117

    Article  MATH  MathSciNet  Google Scholar 

  7. Carlen E.A., Carvalho M.C., Orlandi E. (2000) Algebraic rate of decay for the excess free energy and stability of fronts for a nonlocal phase kinetics equation with a conservation law. II. Commun. Partial Differen. Equ. 25, 847–886

    MATH  MathSciNet  Google Scholar 

  8. Carlen E.A., Carvalho M.C., Orlandi E. (2001) A simple proof of stability of fronts for the Cahn-Hilliard equation. Commun. Math. Phys. 224, 323–340

    Article  MATH  MathSciNet  Google Scholar 

  9. Chen X. (1997) Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations. Adv. Differen. Equ. 2, 125–160

    MATH  Google Scholar 

  10. Connors B.W., Amitai Y.: Generation of epileptiform discharge by local circuits of neocortex. In: Epilepsy: Models, Mechanisms, and Concepts. Schwartkroin P.A. (ed.) Cambridge University Press, Cambridge, pp. 388–423 (1993)

  11. De Masi A., Gobron T., Presutti E. (1995) Travelling fronts in non-local evolution equations. Arch. Ration. Mech. Anal. 132, 143–205

    Article  MATH  MathSciNet  Google Scholar 

  12. De Masi A., Olivieri E., Presutti E. (1998) Spectral properties of integral operators in problems of interface dynamics and metastability. Markov Process. Relat. Fields, 4, 27–112

    MATH  MathSciNet  Google Scholar 

  13. De Masi A., Olivieri E., Presutti E. (2000) Critical droplets for a non-local mean field equation. Markov Process. Relat. Fields, 6, 439–471

    MATH  MathSciNet  Google Scholar 

  14. Bard Ermentrout G., Bryce McLeod J. (1993) Existence and uniqueness of traveling waves for a neural network. Proc. R. Soc. Edinburgh, 123A, 461–478

    Google Scholar 

  15. Evans J.W.: Nerve axon equations. Indiana Univ. Math. J. I Linear approximations, 21, 877–885 (1972) II Stability at rest, 22, 75–90 (1972). III Stability of the nerve impulse, 22, 577–593 (1972). IV The stable and the unstable impulse, 24, 1169–1190 (1975).

  16. Paul C. Fife, Bryce McLeod J., (1977) The approach of solutions of nonlinear diffusion equations to traveling front solutions. Archive for Rational Mechanics and Analysis, 65, 335–361

    MathSciNet  MATH  Google Scholar 

  17. Guo Y., Chow C.C.: Existence and stability of standing pulses in neural networks: I. Existence. II Stability. SIAM J. Appl. Dyn. Syst. 4, I: 217–248, II: 249–281 (2005)

  18. Hodgkin A., Huxley A. (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544

    Google Scholar 

  19. Keener J., Sneyd J. (1998) Mathematical Physiology – Interdisciplinary Applied Mathematics. Springer, Berlin Heidelberg New York

    Google Scholar 

  20. Lance J.W. (1993) Current concepts of migraine pathogenesis. Neurology 43, S11–S15

    Google Scholar 

  21. Pego R.L., Weinstein M.I. (1992) Eigenvalues, and instabilities of solitary waves. Philos. Transact. R. Soc. Lond. 340A: 47–94

    MathSciNet  Google Scholar 

  22. Pego R.L., Weinstein M.I. (1994) Asymptotic stability of solitary waves. Commun. Math. Phys. 164, 305–349

    Article  MATH  MathSciNet  Google Scholar 

  23. Pinto D.J., Bard Ermentrout G. (2001) Spatially structured activity in synaptically coupled neuronal networks. I. traveling fronts and pulses, II. Lateral inhibition and standing pulses. SIAM J. Appl. Math. 62, I: 206–225, II: 226–243

    Google Scholar 

  24. Pinto D.J., Jackson R.K., Eugene Wayne C. (2005) Existence and stability of traveling pulses in a continuous neuronal network. SIAM J. Appl. Dyn. Syst. 4, 954–984

    Article  MATH  MathSciNet  Google Scholar 

  25. Prechtl J.C., Cohen L.B., Pesaran B., Mitra P.P., Kleinfeld D. (1997) Visual stimuli induce waves of electrical activity in turtle cortex. Proc. Nat. Acad. Sci. USA 94, 7621–7626

    Article  Google Scholar 

  26. Rudin W.: Functional Analysis, 2nd edn. International Series in Pure and Applied Mathematics Churchill-Brown Series. McGraw-Hill Inc. New York, 1991. ISBN 0-07-054236-8

  27. Terman D.: Dynamics of singularly perturbed neuronal networks. An introduction to mathematical modeling in physiology, cell biology, and immunology (New Orleans, LA, 2001), In: Proceedings of Symposium in Applied Mathematics, 59, American Mathematical Society, Providence, RI: pp.1–32. (2002)

  28. Terman D.: An introduction to dynamical systems and neuronal dynamics.In: Proceedings of the Mathematical Biosciences Institute (MBI) Program on Computational Neuroscience. The Ohio State University.

  29. Terman D.H., Bard Ermentrout G., Yew A.C. (2001) Propagating activity patterns in thalamic neuronal networks. SIAM J. Appl. Math. 61,1578–1604

    Article  MATH  MathSciNet  Google Scholar 

  30. Zhang L.(2003) On stability of traveling wave solutions in synaptically coupled neuronal networks. Differen. Integral Equ. 16, 513–536

    MATH  Google Scholar 

  31. Zhang L. (2005) Traveling waves of a singularly perturbed system of integral-differential equations arising from neuronal networks. J. Dyn. Differe. Equ. 17, 489–522

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linghai Zhang.

Additional information

Dedicated to Professor Yulin Zhou on the occasion of his eighty-fifth birthday.

Project partly supported by the Reidler Research Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L. Dynamics of neuronal waves. Math. Z. 255, 283–321 (2007). https://doi.org/10.1007/s00209-006-0024-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-006-0024-0

Keywords

AMS Subject Classification

Navigation