Skip to main content
Log in

A framework of Besov–Triebel–Lizorkin type spaces via ball quasi-Banach function sequence spaces I: real-variable characterizations

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

This article is devoted to developing a new and general framework of Besov–Triebel–Lizorkin type spaces based on ball quasi-Banach function sequence spaces. The authors introduce the ball quasi-Banach function sequence space E, the corresponding sequence space \({E}_m\) (\(m\in \mathbb {Z}\)), as well as its related inhomogeneous space Y(E) of Schwartz distributions, which contains various Besov–Triebel–Lizorkin type spaces as special cases. Via assuming that the discrete Peetre-type operator is bounded on \({E}_0\), the mth iteration of the discrete left shift is bounded from \({E}_0\) to \({E}_m\), and the mth iteration of the discrete right shift is bounded from \({E}_0\) to \({E}_{-m}\), the authors introduce, accordingly, the critical Peetre decay index \(J_{{E}}\), the lower critical smoothness index \(s_{-}({E})\), and the upper critical smoothness index \(s_{+}({E})\). Using these important critical indices and further assuming that there exists a sufficiently large positive integer \(\gamma \) such that the \(\gamma \)th iteration of the discrete right shift is bounded from \({E}_{\gamma }\) to \({E}_0\), the authors then establish the \(\varphi \)-transform characterization of Y(E) and the boundedness of almost diagonal operators on a variant of \({E}_0\), from which the authors further deduce various equivalent characterizations of Y(E), respectively, in terms of smooth molecules, smooth atoms, maximal functions, Littlewood–Paley functions, and wavelets and, as applications, the authors finally obtain the boundedness of pseudo-differential operators and generalized Calderón–Zygmund operators on Y(E). The main novelty exists in that these framework results are of wide generality, the aforementioned three critical indices enable the authors to get rid of the dependence on the explicit expression of both \(\Vert \cdot \Vert _{{E}}\) and \(\Vert \cdot \Vert _{Y({E})}\) and the Fefferman–Stein vector-valued inequality, and the aforementioned boundedness on the discrete Peetre-type operator and the mth iterations of both the discrete left and the discrete right shifts are proved to be also necessary to guarantee the boundedness of almost diagonal operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

This article has no associated data.

References

  1. Almeida, A., Hästö, P.: Besov spaces with variable smoothness and integrability. J. Funct. Anal. 258, 1628–1655 (2010)

    Article  MathSciNet  Google Scholar 

  2. Aoki, T.: Locally bounded linear topological spaces. Proc. Imp. Acad. Tokyo 18, 588–594 (1942)

    MathSciNet  Google Scholar 

  3. Bennett, C., Sharpley, R.: Interpolation of Operators, Pure and Applied Mathematics, vol. 129. Academic Press Inc., Boston (1988)

    Google Scholar 

  4. Besov, O.V.: On some families of functional spaces. Imbedding and extension theorems. Dokl. Akad. Nauk SSSR 126, 1163–1165 (1959)

    MathSciNet  Google Scholar 

  5. Besov, O.V.: Investigation of a class of function spaces in connection with imbedding and extension theorems. Trudy Mat. Inst. Steklov. 60, 42–81 (1961)

    MathSciNet  Google Scholar 

  6. Besoy, B.F., Cobos, F.: Function spaces of Lorentz–Sobolev type: atomic decompositions, characterizations in terms of wavelets, interpolation and multiplications. J. Funct. Anal. 282 (Paper No. 109452), 1–46 (2022)

  7. Besoy, B.F., Cobos, F., Triebel, H.: On function spaces of Lorentz–Sobolev type. Math. Ann. 381, 807–839 (2021)

    Article  MathSciNet  Google Scholar 

  8. Besoy, B.F., Haroske, D.D., Triebel, H.: Traces of some weighted function spaces and related non-standard real interpolation of Besov spaces. Math. Nachr. 295, 1669–1689 (2022)

    Article  MathSciNet  Google Scholar 

  9. Bownik, M., Ho, K.-P.: Atomic and molecular decompositions of anisotropic Triebel–Lizorkin spaces. Trans. Am. Math. Soc. 358, 1469–1510 (2006)

    Article  MathSciNet  Google Scholar 

  10. Bu, F., Hytönen, T., Yang, D., Yuan, W.: Matrix-weighted Besov-type and Triebel–Lizorkin-type spaces I: \(A_p\)-dimensions of matrix weights and \(\varphi \)-transform characterizations, submitted

  11. Bu, F., Hytönen, T., Yang, D., Yuan, W.: Matrix-weighted Besov-type and Triebel–Lizorkin-type spaces II: Sharp boundedness of almost diagonal operators, submitted

  12. Bu, F., Hytönen, T., Yang, D., Yuan, W.: Matrix-weighted Besov-type and Triebel–Lizorkin-type spaces III: Characterizations of molecules and wavelets, trace theorems, and boundedness of pseudo-differential operators and Calderón–Zygmund operators, submitted

  13. Bui, H.-Q.: Weighted Besov and Triebel spaces: interpolation by the real method. Hiroshima Math. J. 12, 581–605 (1982)

    MathSciNet  Google Scholar 

  14. Bui, H.-Q.: Characterizations of weighted Besov and Triebel–Lizorkin spaces via temperatures. J. Funct. Anal. 55, 39–62 (1984)

    Article  MathSciNet  Google Scholar 

  15. Bui, H.-Q., Paluszyński, M., Taibleson, M.: A maximal function characterization of weighted Besov–Lipschitz and Triebel–Lizorkin spaces. Studia Math. 119, 219–246 (1996)

    MathSciNet  Google Scholar 

  16. Bui, H.-Q., Paluszyński, M., Taibleson, M.: Characterization of the Besov–Lipschitz and Triebel–Lizorkin spaces. The case \(q<1\). J. Fourier Anal. Appl. 3, 837–846 (1997)

    Article  MathSciNet  Google Scholar 

  17. Bui, T.A.: Besov and Triebel–Lizorkin spaces for Schrödinger operators with inverse-square potentials and applications. J. Differ. Equ. 269, 641–688 (2020)

    Article  Google Scholar 

  18. Bui, T.A.: Hermite pseudo-multipliers on new Besov and Triebel–Lizorkin spaces. J. Approx. Theory 252(105348), 1–16 (2020)

    MathSciNet  Google Scholar 

  19. Bui, T.A., Bui, T.Q., Duong, X.T.: Decay estimates on Besov and Triebel–Lizorkin spaces of the Stokes flows and the incompressible Navier–Stokes flows in half-spaces. J. Differ. Equ. 340, 83–110 (2022)

    Article  MathSciNet  Google Scholar 

  20. Bui, T.A., Duong, X.T.: Besov and Triebel–Lizorkin spaces associated to Hermite operators. J. Fourier Anal. Appl. 21, 405–448 (2015)

    Article  MathSciNet  Google Scholar 

  21. Bui, T.A., Duong, X.T.: Spectral multipliers of self-adjoint operators on Besov and Triebel–Lizorkin spaces associated to operators. Int. Math. Res. Not. IMRN 2021, 18181–18224 (2021)

    Article  MathSciNet  Google Scholar 

  22. Cho, Y.-K.: Continuous characterization of the Triebel–Lizorkin spaces and Fourier multipliers. Bull. Korean Math. Soc. 47, 839–857 (2010)

    Article  MathSciNet  Google Scholar 

  23. Cleanthous, G., Georgiadis, A.G., Nielsen, M.: Anisotropic mixed-norm Hardy spaces. J. Geom. Anal. 27, 2758–2787 (2017)

    Article  MathSciNet  Google Scholar 

  24. Cleanthous, G., Georgiadis, A.G., Nielsen, M.: Discrete decomposition of homogeneous mixed-norm Besov spaces. In: Functional Analysis, Harmonic Analysis, and Image Processing: A Collection of Papers in Honor of Björn Jawerth, pp. 167–184, Contemp. Math., vol. 693. Amer. Math. Soc., Providence (2017)

  25. Cleanthous, G., Georgiadis, A.G., Nielsen, M.: Fourier multipliers on anisotropic mixed-norm spaces of distributions. Math. Scand. 124, 289–304 (2019)

    Article  MathSciNet  Google Scholar 

  26. Cleanthous, G., Georgiadis, A.G., Nielsen, M.: Molecular decomposition of anisotropic homogeneous mixed-norm spaces with applications to the boundedness of operators. Appl. Comput. Harmon. Anal. 47, 447–480 (2019)

    Article  MathSciNet  Google Scholar 

  27. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41, 909–996 (1988)

    Article  MathSciNet  Google Scholar 

  28. Daubechies, I.: Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1992)

  29. Diening, L., Hästö, P., Roudenko, S.: Function spaces of variable smoothness and integrability. J. Funct. Anal. 256, 1731–1768 (2009)

    Article  MathSciNet  Google Scholar 

  30. Feichtinger, H.G., Gröbner, P.: Banach spaces of distributions defined by decomposition methods. I. Math. Nachr. 123, 97–120 (1985)

    Article  MathSciNet  Google Scholar 

  31. Folland, G.B.: Real Analysis, Modern Techniques and Their Applications, 2nd edn, Pure and Applied Mathematics (New York), A Wiley-Interscience Publication. Wiley, New York (1999)

    Google Scholar 

  32. Frazier, M., Jawerth, B.: Decomposition of Besov spaces. Indiana Univ. Math. J. 34, 777–799 (1985)

    Article  MathSciNet  Google Scholar 

  33. Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution spaces. J. Funct. Anal. 93, 34–170 (1990)

    Article  MathSciNet  Google Scholar 

  34. Frazier, M., Jawerth, B., Weiss, G.: Littlewood–Paley Theory and The Study of Function Spaces, CBMS Regional Conference Series in Mathematics 79, Published for the Conference Board of the Mathematical Sciences, Washington, DC. American Mathematical Society, Providence (1991)

    Google Scholar 

  35. Frazier, M., Torres, R., Weiss, G.: The boundedness of Calderón–Zygmund operators on the spaces \(\dot{F}^{\alpha , q}_p\). Rev. Mat. Iberoam. 4, 41–72 (1988)

    Article  Google Scholar 

  36. Georgiadis, A.G., Johnsen, J., Nielsen, M.: Wavelet transforms for homogeneous mixed-norm Triebel–Lizorkin spaces. Monatsh. Math. 183, 587–624 (2017)

    Article  MathSciNet  Google Scholar 

  37. Georgiadis, A.G., Kerkyacharian, G., Kyriazis, G., Petrushev, P.: Homogeneous Besov and Triebel–Lizorkin spaces associated to non-negative self-adjoint operators. J. Math. Anal. Appl. 449, 1382–1412 (2017)

    Article  MathSciNet  Google Scholar 

  38. Georgiadis, A.G., Kyriazis, G.: Embeddings between Triebel–Lizorkin spaces on metric spaces associated with operators. Anal. Geom. Metr. Spaces 8, 418–429 (2020)

    Article  MathSciNet  Google Scholar 

  39. Georgiadis, A.G., Nielsen, M.: Pseudodifferential operators on mixed-norm Besov and Triebel–Lizorkin spaces. Math. Nachr. 289, 2019–2036 (2016)

    Article  MathSciNet  Google Scholar 

  40. Grafakos, L.: Classical Fourier Analysis, 3rd edn, Graduate Texts in Mathematics, vol. 249. Springer, New York (2014)

    Book  Google Scholar 

  41. Grafakos, L., Torres, R.: Pseudodifferential operators with homogeneous symbols. Mich. Math. J. 46, 261–269 (1999)

    Article  MathSciNet  Google Scholar 

  42. Haroske, D.D., Liu, Z.: Generalized Besov-type and Triebel–Lizorkin-type spaces. Studia Math. 273, 161–199 (2023)

    Article  MathSciNet  Google Scholar 

  43. Haroske, D.D., Liu, Z., Moura, S.D., Skrzypczak, L.: Embeddings of generalised Morrey smoothness spaces. Acta Math. Sin. (Engl. Ser.) (to appear)

  44. Haroske, D.D., Moura, S.D., Skrzypczak, L.: On a bridge connecting Lebesgue and Morrey spaces in view of their growth properties. Anal. Appl. (Singap.) (2024). https://doi.org/10.1142/S0219530523500379

    Article  Google Scholar 

  45. Haroske, D.D., Piotrowska, I.: Atomic decompositions of function spaces with Muckenhoupt weights, and some relation to fractal analysis. Math. Nachr. 281, 1476–1494 (2008)

    Article  MathSciNet  Google Scholar 

  46. Haroske, D.D., Skrzypczak, L.: Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights. I. Rev. Mat. Complut. 21, 135–177 (2008)

    Article  MathSciNet  Google Scholar 

  47. Haroske, D.D., Skrzypczak, L.: Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights, II. General weights. Ann. Acad. Sci. Fenn. Math. 36, 111–138 (2011)

    Article  MathSciNet  Google Scholar 

  48. Haroske, D.D., Skrzypczak, L., Triebel, H.: Nuclear Fourier transforms. J. Fourier Anal. Appl. 29, Paper No. 38, 1–28 (2023)

  49. Haroske, D.D., Triebel, H.: Morrey smoothness spaces: a new approach. Sci. China Math. 66, 1301–1358 (2023)

    Article  MathSciNet  Google Scholar 

  50. Hedberg, L.I., Netrusov, Y.: An axiomatic approach to function spaces, spectral synthesis, and Luzin approximation. Mem. Am. Math. Soc. 188(882), 1–97 (2007)

    MathSciNet  Google Scholar 

  51. Ho, K.-P.: Littlewood–Paley spaces. Math. Scand. 108, 77–102 (2011)

    Article  MathSciNet  Google Scholar 

  52. Ho, K.-P.: Wavelet bases in Littlewood–Paley spaces. East J. Approx. 17, 333–345 (2011)

    MathSciNet  Google Scholar 

  53. Ho, K.-P.: Vector-valued singular integral operators on Morrey type spaces and variable Triebel–Lizorkin-Morrey spaces. Ann. Acad. Sci. Fenn. Math. 37, 375–406 (2012)

    Article  MathSciNet  Google Scholar 

  54. Ho, K.-P.: Besov–Köthe spaces and applications. Ann. Funct. Anal. 4, 27–47 (2013)

    Article  MathSciNet  Google Scholar 

  55. Ho, K.-P.: Sobolev–Jawerth embedding of Triebel–Lizorkin–Morrey–Lorentz spaces and fractional integral operator on Hardy type spaces. Math. Nachr. 287, 1674–1686 (2014)

    Article  MathSciNet  Google Scholar 

  56. Ho, K.-P.: Vector-valued operators with singular kernel and Triebel–Lizorkin block spaces with variable exponents. Kyoto J. Math. 56, 97–124 (2016)

    Article  MathSciNet  Google Scholar 

  57. Hörmander, L.: Pseudo-differential operators of type \(1,1\). Commun. Partial Differ. Equ. 13, 1085–1111 (1988)

    Article  MathSciNet  Google Scholar 

  58. Hörmander, L.: Continuity of pseudo-differential operators of type \(1,1\). Commun. Partial Differ. Equ. 14, 231–243 (1989)

    Article  MathSciNet  Google Scholar 

  59. Izuki, M., Sawano, Y.: Wavelet bases in the weighted Besov and Triebel–Lizorkin spaces with \(A^{\rm loc}_p\)-weights. J. Approx. Theory 161, 656–673 (2009)

    Article  MathSciNet  Google Scholar 

  60. Izuki, M., Sawano, Y.: Atomic decomposition for weighted Besov and Triebel–Lizorkin spaces. Math. Nachr. 285, 103–126 (2012)

    Article  MathSciNet  Google Scholar 

  61. Koskela, P., Yang, D., Zhou, Y.: A characterization of Hajłasz–Sobolev and Triebel–Lizorkin spaces via grand Littlewood–Paley functions. J. Funct. Anal. 258, 2637–2661 (2010)

    Article  MathSciNet  Google Scholar 

  62. Koskela, P., Yang, D., Zhou, Y.: Pointwise characterizations of Besov and Triebel–Lizorkin spaces and quasiconformal mappings. Adv. Math. 226, 3579–3621 (2011)

    Article  MathSciNet  Google Scholar 

  63. Kozono, H., Yamazaki, M.: Semilinear heat equations and the Navier–Stokes equation with distributions in new function spaces as initial data. Commun. Partial Differ. Equ. 19, 959–1014 (1994)

    Article  MathSciNet  Google Scholar 

  64. Liang, Y., Sawano, Y., Ullrich, T., Yang, D., Yuan, W.: New characterizations of Besov–Triebel–Lizorkin–Hausdorff spaces including coorbits and wavelets. J. Fourier Anal. Appl. 18, 1067–1111 (2012)

    Article  MathSciNet  Google Scholar 

  65. Liang, Y., Yang, D., Yuan, W., Sawano, Y., Ullrich, T.: A new framework for generalized Besov-type and Triebel–Lizorkin-type spaces. Dissert. Math. 489, 1–114 (2013)

    Article  MathSciNet  Google Scholar 

  66. Lizorkin, P.I.: Operators connected with fractional differentiation, and classes of differentiable functions, Studies in the Theory of Differentiable Functions of Several Variables and its Applications IV. Trudy Mat. Inst. Steklov. 117, 212–243 (1972)

    MathSciNet  Google Scholar 

  67. Lizorkin, P.I.: Properties of functions in the spaces \(\Lambda ^{r}_{p,\,\theta }\), Studies in the Theory of Differentiable Functions of Several Variables and its Applications V. Trudy Mat. Inst. Steklov. 131, 158–181 (1974)

    MathSciNet  Google Scholar 

  68. Mazzucato, A.L.: Besov–Morrey spaces: function space theory and applications to non-linear PDE. Trans. Am. Math. Soc. 355, 1297–1364 (2003)

    Article  MathSciNet  Google Scholar 

  69. Mazzucato, A.L.: Decomposition of Besov–Morrey spaces. In: Harmonic Analysis at Mount Holyoke (South Hadley, MA, 2001), pp. 279–294, Contemp. Math., vol. 320. Amer. Math. Soc., Providence (2003)

  70. Meyer, Y.: Wavelets and Operators, Cambridge Studies in Advanced Mathematics, vol. 37. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  71. Peetre, J.: On spaces of Triebel–Lizorkin type. Ark. Mat. 13, 123–130 (1975)

    Article  MathSciNet  Google Scholar 

  72. Rolewicz, S.: On a certain class of linear metric spaces. Bull. Acad. Polon. Sci. Cl. III. 5, 471–473 (1957)

    MathSciNet  Google Scholar 

  73. Rosenthal, M.: Local means, wavelet bases and wavelet isomorphisms in Besov–Morrey and Triebel–Lizorkin–Morrey spaces. Math. Nachr. 286, 59–87 (2013)

    Article  MathSciNet  Google Scholar 

  74. Rychkov, V.S.: Littlewood–Paley theory and function spaces with \(A^{\rm loc}_p\) weights. Math. Nachr. 224, 145–180 (2001)

    Article  MathSciNet  Google Scholar 

  75. Saka, K.: 2-microlocal spaces associated with Besov type and Triebel–Lizorkin type spaces. Rev. Mat. Complut. 35, 923–962 (2022)

    Article  MathSciNet  Google Scholar 

  76. Saka, K.: Local theory for 2-microlocal Besov and Triebel-Lizorkin spaces of Jaffard type. Math. Nachr. 296, 1–28 (2023)

    Article  MathSciNet  Google Scholar 

  77. Sawano, Y.: Wavelet characterization of Besov–Morrey and Triebel–Lizorkin–Morrey spaces. Funct. Approx. Comment. Math. 38, 93–107 (2008)

    Article  MathSciNet  Google Scholar 

  78. Sawano, Y.: A note on Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces. Acta Math. Sin. (Engl. Ser.) 25, 1223–1242 (2009)

    Article  MathSciNet  Google Scholar 

  79. Sawano, Y.: Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces on domains. Math. Nachr. 283, 1456–1487 (2010)

    Article  MathSciNet  Google Scholar 

  80. Sawano, Y.: Theory of Besov Spaces, Developments in Mathematics, vol. 56. Springer, Singapore (2018)

    Book  Google Scholar 

  81. Sawano, Y., Ho, K.-P., Yang, D., Yang, S.: Hardy spaces for ball quasi-Banach function spaces. Dissert. Math. 525, 1–102 (2017)

    Article  MathSciNet  Google Scholar 

  82. Sawano, Y., Tanaka, H.: Decompositions of Besov–Morrey spaces and Triebel–Lizorkin-Morrey spaces. Math. Z. 257, 871–905 (2007)

    Article  MathSciNet  Google Scholar 

  83. Sawano, Y., Yang, D., Yuan, W.: New applications of Besov-type and Triebel–Lizorkin-type spaces. J. Math. Anal. Appl. 363, 73–85 (2010)

    Article  MathSciNet  Google Scholar 

  84. Seeger, A., Trebels, W.: Embeddings for spaces of Lorentz–Sobolev type. Math. Ann. 373, 1017–1056 (2019)

    Article  MathSciNet  Google Scholar 

  85. Tang, L., Xu, J.: Some properties of Morrey type Besov–Triebel spaces. Math. Nachr. 278, 904–917 (2005)

    Article  MathSciNet  Google Scholar 

  86. Torres, R.: Boundedness results for operators with singular kernels on distribution spaces. Mem. Am. Math. Soc. 90(442), 1–172 (1991)

    MathSciNet  Google Scholar 

  87. Triebel, H.: Spaces of distributions of Besov type on Euclidean \(n\)-space. Duality, interpolation. Ark. Mat. 11, 13–64 (1973)

    Article  MathSciNet  Google Scholar 

  88. Triebel, H.: Theory of Function Spaces, Monographs in Mathematics, vol. 78. Birkhäuser Verlag, Basel (1983)

    Book  Google Scholar 

  89. Triebel, H.: Theory of Function Spaces II, Monographs in Mathematics, vol. 84. Birkhäuser Verlag, Basel (1992)

    Google Scholar 

  90. Triebel, H.: Theory of Function Spaces III, Monographs in Mathematics, vol. 100. Birkhäuser Verlag, Basel (2006)

    Google Scholar 

  91. Voigtlaender, F.: Structured, compactly supported Banach frame decompositions of decomposition spaces. Dissert. Math. 575, 1–179 (2022)

    Article  MathSciNet  Google Scholar 

  92. Voigtlaender, F.: Embeddings of decomposition spaces. Mem. Am. Math. Soc. 287(1426), 1–255 (2023)

    MathSciNet  Google Scholar 

  93. Xu, J.: Variable Besov and Triebel–Lizorkin spaces. Ann. Acad. Sci. Fenn. Math. 33, 511–522 (2008)

    MathSciNet  Google Scholar 

  94. Xu, J.: An atomic decomposition of variable Besov and Triebel–Lizorkin spaces. Armen. J. Math. 2, 1–12 (2009)

    MathSciNet  Google Scholar 

  95. Yang, D., Yuan, W.: A new class of function spaces connecting Triebel–Lizorkin spaces and \(Q\) spaces. J. Funct. Anal. 255, 2760–2809 (2008)

    Article  MathSciNet  Google Scholar 

  96. Yang, D., Yuan, W.: New Besov-type spaces and Triebel–Lizorkin-type spaces including \(Q\) spaces. Math. Z. 265, 451–480 (2010)

    Article  MathSciNet  Google Scholar 

  97. Yang, D., Yuan, W.: Relations among Besov-type spaces, Triebel–Lizorkin-type spaces and generalized Carleson measure spaces. Appl. Anal. 92, 549–561 (2013)

    Article  MathSciNet  Google Scholar 

  98. Yang, D., Yuan, W., Zhuo, C.: Musielak–Orlicz Besov-type and Triebel–Lizorkin-type spaces. Rev. Mat. Complut. 27, 93–157 (2014)

    Article  MathSciNet  Google Scholar 

  99. Yang, D., Zhuo, C., Yuan, W.: Besov-type spaces with variable smoothness and integrability. J. Funct. Anal. 269, 1840–1898 (2015)

    Article  MathSciNet  Google Scholar 

  100. Yang, D., Zhuo, C., Yuan, W.: Triebel–Lizorkin type spaces with variable exponents. Banach J. Math. Anal. 9, 146–202 (2015)

    Article  MathSciNet  Google Scholar 

  101. Yuan, W., Sickel, W., Yang, D.: Morrey and Campanato Meet Besov, Lizorkin and Triebel. Lecture Notes in Mathematics, vol. 2005. Springer, Berlin (2010)

  102. Yuan, W., Sickel, W., Yang, D.: The Haar system in Besov-type spaces. Studia Math. 253, 129–162 (2020)

    Article  MathSciNet  Google Scholar 

  103. Zhanpeisov, E.: Existence of solutions to fractional semilinear parabolic equations in Besov–Morrey spaces. Discrete Contin. Dyn. Syst. 43, 3969–3986 (2023)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for her/his careful reading and enlightening remarks which do improve the presentation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Yuan.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This project is partially supported by the National Key Research and Development Program of China (Grant No. 2020YFA0712900), the National Natural Science Foundation of China (Grant Nos. 12371093, 12122102, 12326307, and 12326308), and the Fundamental Research Funds for the Central Universities (Grant No. 2233300008).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Yang, D. & Yuan, W. A framework of Besov–Triebel–Lizorkin type spaces via ball quasi-Banach function sequence spaces I: real-variable characterizations. Math. Ann. (2024). https://doi.org/10.1007/s00208-024-02856-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00208-024-02856-2

Mathematics Subject Classification

Navigation