Skip to main content
Log in

Anisotropic Mixed-Norm Hardy Spaces

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We introduce and explore Hardy spaces defined by mixed Lebesgue norms and anisotropic dilations. We prove that the definitions of these spaces in terms of smooth, non-tangential, auxiliary, grand, and Poisson maximal operators coincide. We also study the relation between anisotropic mixed-norm Hardy spaces and mixed-norm Lebesgue spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Grafakos in [21, p.63] uses the Fourier transform of P, but an exact formula still seems essential.

  2. where \(\vec {q}\) is the conjugate of \(\vec {p}\) i.e \(\vec {q}=(q_1,\dots ,q_n)\) such that \(q_j=p_j',\;j=1,\dots ,n.\)

References

  1. Antonić, N., Ivec, I.: On the Hormander-Mihlin theorem for mixed-norm Lebesgue spaces. J. Math. Anal. Appl. 433(1), 176–199 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bagby, R.J.: An extended inequality for the maximal function. Proc. Am. Math. Soc. 48, 419–422 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benedek, A.I., Panzone, R.: The spaces \(L^{P}\) with mixed norm. Duke Math. J. 28, 301–324 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borup, L., Nielsen, M.: On anisotropic Triebel-Lizorkin type spaces, with applications to the study of pseudo-differential operators. J. Funct. Spaces Appl. 6(2), 107–154 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bownik, M., Li, B., Yang, D.: Littlewood-Paley characterization and duality of weighted anisotropic product Hardy spaces. J. Funct. Anal. 266(5), 2611–2661 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bownik, M., Li, B., Yang, D., Zhou, Y.: Weighted anisotropic product Hardy spaces and boundedness of sublinear operators. Math. Nachr. 283(3), 392–442 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bownik, M., Li, B., Yang, D., Zhou, Y.: Weighted anisotropic product Hardy spaces and their applications in boundedness of sublinear operators. Indiana Univ. Math. J. 57(7), 3065–3100 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bownik, M.: Anisotropic Hardy spaces and wavelets. Mem. Am. Math. Soc. 164, 781 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Bui, T., Duong, X.: Hardy spaces associated to the discrete Laplacians on graphs and boundedness of singular integrals. Trans. Am. Math. Soc. 366(7), 3451–3485 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Coifman, R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83, 569–645 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dekel, S., Kerkyacharian, G., Kyriazis, G., Petrushev, P.: Hardy spaces associated with non-nagative self-adjoint operators. Arxiv e-prints arXiv:1409.0424

  12. Dekel, S., Weissblat, T.: On dual spaces of anisotropic Hardy spaces. Math. Nachr. 285(17–18), 2078–2092 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dekel, S., Petrushev, P., Weissblat, T.: Hardy spaces on \({\mathbb{R}}^n\) with pointwise variable anisotropy. J. Fourier Anal. Appl. 17(5), 1066–1107 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Duong, X., Li, J.: Hardy spaces associated to operators satisfying Davies-Gaffney estimates and bounded holomorphic functional calculus. J. Funct. Anal. 264(6), 1409–1437 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Duong, X., Yan, L.: Spectral multipliers for Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates. J. Math. Soc. Jpn. 63(1), 295–319 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Duong, X., Yan, L.: Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. J. Am. Math. Soc. 18(4), 943–973 (2005). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fefferman, C., Stein, E.: \(H^p\) spaces of several variables. Acta Math. 129, 137–193 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fernandez, D.L.: Vector-valued singular integral operators on \(L^p\)-spaces with mixed norms and applications. Pac. J. Math. 129(2), 257–275 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Georgiadis, A.G., Nielsen, M.: Pseudodifferential operators on mixed-norm Triebel-Lizorkin and Besov spaces. Math. Nachr. 289(16), 2019–2036 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Georgiadis, A.G.: \(H^p\)- bounds for spectral multipliers on Riemannian manifolds. Bull. Sci. Math. 134, 750–766 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Grafakos, L.: Modern Fourier Analysis. Graduate Texts in Mathematics, vol. 250, 3rd edn. Springer, New York (2014)

    MATH  Google Scholar 

  22. Grafakos, L.: Classical Fourier Analysis. Graduate Texts in Mathematics, vol. 249, 3rd edn. Springer, New York (2014)

    MATH  Google Scholar 

  23. Grafakos, L., Liu, L., Yang, D.: Maximal function characterizations of Hardy spaces on RD-spaces and their applications. Sci. China Ser. A 51(12), 2253–2284 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hofmann, S., Lu, G., Mitrea, D., Mitrea, M., Yan, L.: Hardy Spaces Associated to Non-negative Self-Adjoint Operators Satisfying Davies-Gaffney Estimates, vol. 214, p. 1007. Memoirs of the American Mathematical Society, Providence (2011)

    MATH  Google Scholar 

  25. Hörmander, L.: Estimates for translation invariant operators in \(L^p\) spaces. Acta Math. 104, 93–140 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hytönen, T., Yang, D., Yang, D.: The Hardy space \(H^1\) on non-homogeneous metric spaces. Math. Proc. Camb. Philos. Soc. 153(1), 9–31 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hytönen, T., Martikainen, H.: Non-homogeneous T1 theorem for bi-parameter singular integrals. Adv. Math. 261, 220273 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Johnsen, J., Sickel, W.: A direct proof of Sobolev embeddings for quasi-homogeneous Lizorkin-Triebel spaces with mixed norms. J. Funct. Spaces Appl. 5(2), 183–198 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Johnsen, J., Sickel, W.: On the trace problem for Lizorkin-Triebel spaces with mixed norms. Math. Nachr. 281(5), 669–696 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kumano-go, H.: Pseudodifferential Operators. MIT Press, Cambridge (1981)

    MATH  Google Scholar 

  31. Kyrezi, I., Marias, M.: \(H^p\)-bounds for spectral multipliers on graphs. Trans. Am. Math. Soc. 361(2), 1053–1067 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lizorkin, P. I.: Multipliers of fourier integrals and bounds of convolutions in spaces with mixed norms, Applications, Izv. Akad. Nauk SSSR Ser. Mat. 34, 225–255 (1970), Engl. Transl. Math. USSR Izv. 4 (1970)

  33. Nakai, E., Sawano, Y.: Hardy spaces with variable exponents and generalized Campanato spaces. J. Funct. Anal. 262, 3665–3748 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rychkov, V.: Littlewood-Paley theory and function spaces with \(A^{loc}_{p}\) weights. Math. Nachr. 224, 145–180 (2001)

    Article  MathSciNet  Google Scholar 

  35. Schmeisser, H.-J., Triebel, H.: Topics in Fourier Analysis and Function Spaces, Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig (1987). Published also by John Wiley, Chichester (1987)

  36. Stein, E.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  37. Stein, E., Wainger, S.: Problems in harmonic analysis related to curvature. Bull. Am. Math. Soc. 84(6), 1239–1295 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  38. Torres, R., Ward, E.: Leibniz’s rule, sampling and wavelets on mixed Lebesgue spaces. J. Fourier Anal. Appl. 21, 1053–1076 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yang, D., Zhou, Y.: Localized Hardy spaces \(H^1\) related to admissible functions on RD-spaces and applications to Schrdinger operators. Trans. Am. Math. Soc. 363(3), 1197–1239 (2011)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Supported by the Danish Council for Independent Research | Natural Sciences, Grant 12-124675, “Mathematical and Statistical Analysis of Spatial Data”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nielsen.

Appendix

Appendix

1.1 Proof of Lemma 4.2

Proof

Let \(\phi \in {\mathcal {S}}\) such that

$$\begin{aligned} {\hat{\phi }}(\xi )= {\left\{ \begin{array}{ll} 1,\;\; |\xi |\le 1 \\ 0,\;\; |\xi |\ge 2 \end{array}\right. }. \end{aligned}$$

We set \(\varphi (x):=\phi (x)-2^{-\nu }\phi (2^{-\vec {a}}x)\) and \(\psi _k(x)=\varphi _{(k)}(x)\) for every \(k\in {\mathbb {N}}\). Then \(\widehat{\psi _k}(\xi )={\hat{\varphi }}(2^{-k\vec {a}}\xi )={\hat{\phi }}(2^{-k\vec {a}}\xi )-{\hat{\phi }}(2^{(1-k)\vec {a}}\xi ),\;k\in {\mathbb {N}}\). We denote by \(\psi _0=\phi \) and we have \(\mathrm{{supp}\, }\widehat{\psi _0}\subset \{|\xi |\le 2\}=:T_0\) and

$$\begin{aligned} \mathrm{{supp}\, }\widehat{\psi _k}\subset 2^{k\vec {a}}\{2^{-a_M}\le |\xi |\le 2\}=:T_k,\;\;k\in {\mathbb {N}}. \end{aligned}$$
(6.7)

Also for every \(\xi \in {\mathbb {R}}^n\), \(\lim \limits _{k\rightarrow \infty } {\hat{\phi }}(2^{-k\vec {a}}\xi )=1\), so

$$\begin{aligned} \sum \limits _{k=0}^\infty \widehat{\psi _k}(\xi ) =1. \end{aligned}$$
(6.8)

We have \(|{\hat{\Phi }}(\xi )|\ge 1/2\) when \(|\xi |\le 2\) (or we modify properly \(\Phi \) and keep the same notation), then by (6.8)

$$\begin{aligned} {\hat{\Psi }}(\xi )=\sum \limits _{k=0}^\infty \widehat{\psi _k}(\xi ){\hat{\Psi }}(\xi )=:\sum \limits _{k=0}^\infty {\hat{\eta }}^{(k)}(\xi ){\hat{\Phi }}(2^{-k\vec {a}}\xi ), \end{aligned}$$

where \({\hat{\eta }}^{(k)}(\xi )=\widehat{\psi _k}(\xi )\Big ({\hat{\Phi }}(2^{-k\vec {a}}\xi )\Big )^{-1}{\hat{\Psi }}(\xi ),\) which gives (4.3).

By (6.7) it is \(\mathrm{{supp}\, }{\hat{\eta }}^{(k)}\subset T_k,\;k\ge 0\). Let \(N>\nu \) and \(|\beta |< \frac{N-\nu }{a_M}\), then

$$\begin{aligned} \bigg |\partial ^\beta {\hat{\Psi }}(\xi )\chi _{T_k}(\xi ) \bigg |\le c_N (1+|\xi |)^{-N} \sum \limits _{|\gamma |\le N} \bigg |\xi ^\gamma \partial ^\beta {\hat{\Psi }}(\xi ) \bigg |\chi _{T_k}(\xi ). \end{aligned}$$
(6.9)

Let \(k\in {\mathbb {N}}\). For every \(\xi \in T_k\) it is \(\xi =2^{k\vec {a}}\zeta \), for some \(\zeta \) with \(2^{-a_M}\le |\zeta |\le 2.\) By (2.8) and (2.3)

$$\begin{aligned} \langle \xi \rangle _{{\vec {a}}}\ge c \bigg (1+|2^{k\vec {a}}\zeta |_{\vec {a}} \bigg )=c \bigg (1+2^k|\zeta |_{\vec {a}} \bigg )\ge c 2^k|\zeta |_{\vec {a}}\ge c 2^k, \end{aligned}$$

which is also true for \(\xi \in T_0\), so

$$\begin{aligned} (1+|\xi |)^{-N}\le c \langle \xi \rangle _{{\vec {a}}}^{-Na_m}\le c 2^{-k Na_m},\;k\ge 0. \end{aligned}$$
(6.10)

On the other hand

$$\begin{aligned} |\xi ^\gamma \partial ^\beta {\hat{\Psi }}(\xi )|= & {} |\widehat{\partial ^\gamma (x^\beta \Psi )}(\xi )|\\\le & {} \sum \limits _{\delta \le \gamma } {\textstyle \left( {\begin{array}{c}\gamma \\ \delta \end{array}}\right) }\int _{{\mathbb {R}}^n} |x^{(\beta -\delta )_+}||\partial ^{\gamma -\delta } \Psi (x)|\text {d}x, \end{aligned}$$

where for every \(\gamma \in ({{\mathbb {N}}}\cup \{0\})^n,\;x^{\gamma _+}=x_1^{{\gamma _1}_+}\cdots x_n^{{\gamma _n}_+}\), and \({\gamma _j}_+=\max (\gamma _j,0).\)

But using (2.6) and (2.8)

$$\begin{aligned} |x^{(\beta -\delta )_+}|\le |x|^{|(\beta -\delta )_+|}\le (1+|x|)^{|(\beta -\delta )_+|}\le (1+|x|)^{|\beta |}\le c \langle x\rangle _{{\vec {a}}}^{|\beta |a_M}. \end{aligned}$$

Then by (3.5), (2.11), and since \(N>|\beta |a_M+\nu \)

$$\begin{aligned} |\xi ^\gamma \partial ^\beta {\hat{\Psi }}(\xi )|\le c_N {\mathscr {P}}_N(\Psi )\sum \limits _{\delta \le \gamma } \int _{{\mathbb {R}}^n} \langle x\rangle _{{\vec {a}}}^{-(N-|\beta |a_M)}\text {d}x\le c_N {\mathscr {P}}_N(\Psi ). \end{aligned}$$
(6.11)

So combining (6.9)–(6.11)

$$\begin{aligned} \bigg |\partial ^\beta {\hat{\Psi }}(\xi )\chi _{T_k}(\xi ) \bigg |\le c_N{\mathscr {P}}_N(\Psi )2^{-kNa_m}. \end{aligned}$$
(6.12)

Furthermore \(|\partial ^\alpha {\hat{\psi }}_k(\xi )|,|\partial ^\alpha ({\hat{\Phi }}(2^{-k\vec {a}}\xi ))^{-1}(\xi )|\le c_\alpha 2^{-k\vec {a}\cdot \alpha }.\) The last estimate and (6.12) give

$$\begin{aligned} \bigg |\partial ^\alpha {\hat{\eta }}^{(k)}(\xi ) \bigg |\le & {} \sum \limits _{\beta \le \alpha } {\textstyle \left( {\begin{array}{c}\alpha \\ \beta \end{array}}\right) } c_\alpha 2^{-k\vec {a}\cdot \beta } c_N {\mathscr {P}}_N(\Psi ) 2^{-kNa_m}\\\le & {} c_N {\mathscr {P}}_N(\Psi ) 2^{-kNa_m}, \end{aligned}$$

for \(|\alpha |\le N_1\).

Finally (2.6) leads to

$$\begin{aligned} |\eta ^{(k)}(x)|= & {} \bigg |{\mathcal {F}}^{-1}{\hat{\eta }}^{(k)}(x) \bigg |\le c (1+|x|)^{-N_1}\sum \limits _{|\alpha |\le N_1} \big \Vert \partial ^\alpha {\hat{\eta }}^{(k)}\big \Vert _1\\\le & {} c \langle x\rangle _{{\vec {a}}}^{-N_1a_m} \sum \limits _{|\alpha |\le N_1} \big \Vert \partial ^\alpha {\hat{\eta }}^{(k)}\big \Vert _\infty |\mathrm{{supp}\, }{\hat{\eta }}^{(k)}|\\\le & {} c_N {\mathscr {P}}_N(\Psi ) 2^{k\nu }2^{-kNa_m}\langle x\rangle _{{\vec {a}}}^{-N_1a_m}, \end{aligned}$$

since \(|T_k|=\int _{T_k} \text {d}y\le 2^{k\nu } \int _{\{|\xi |\le 2\}} \text {d}z =c2^{k\nu }\), where we set \(y=2^{k\vec {a}}z\). \(\square \)

1.2 Proof of Lemma 4.4.

Proof

Let \(\varphi \in {\mathcal {S}}_*\). We assume without loss of generality that \({\hat{\varphi }}(0)=1.\) Then \(\lim \limits _{k\rightarrow \infty } {\hat{\varphi }}(2^{-k\vec {a}}\xi )=1,\;\xi \in {\mathbb {R}}^n\). We set \(N:=M+2\) and we observe that

$$\begin{aligned} \sum \limits _{m=1}^N{\textstyle \left( {\begin{array}{c}N\\ m\end{array}}\right) }{\hat{\varphi }}(\xi )^{2m}(1-{\hat{\varphi }}(\xi )^2)^{N-m}= & {} ({\hat{\varphi }}(\xi )^2+1-{\hat{\varphi }}(\xi )^2)^N-(1-{\hat{\varphi }}(\xi )^2)^N\nonumber \\= & {} 1-(1-{\hat{\varphi }}(\xi )^2)^N. \end{aligned}$$
(6.13)

In addition

$$\begin{aligned}&\sum \limits _{m=1}^N{\textstyle \left( {\begin{array}{c}N\\ m\end{array}}\right) }\big [{\hat{\varphi }}(2^{-k\vec {a}}\xi )^2-{\hat{\varphi }}(2^{-(k-1)\vec {a}}\xi )^2\big ]^m \big (1-{\hat{\varphi }}(2^{-k\vec {a}}\xi )^2\big )^{N-m}\\&\quad = \bigg (1-{\hat{\varphi }}(2^{-(k-1)\vec {a}}\xi )^2 \bigg )^N- \bigg (1-{\hat{\varphi }}(2^{-k\vec {a}}\xi )^2 \bigg )^N, \end{aligned}$$

which implies that

$$\begin{aligned} \sum \limits _{k=1}^\infty \sum \limits _{m=1}^N {\textstyle \left( {\begin{array}{c}N\\ m\end{array}}\right) } \bigg [{\hat{\varphi }}(2^{-k\vec {a}}\xi )^2-{\hat{\varphi }}(2^{-(k-1)\vec {a}}\xi )^2 \bigg ]^m \big (1-{\hat{\varphi }}(2^{-k\vec {a}}\xi )^2 \big )^{N-m}=(1-{\hat{\varphi }}(\xi )^2)^N,\nonumber \\ \end{aligned}$$
(6.14)

since \(\lim \limits _{k\rightarrow \infty }{\hat{\varphi }}(2^{-k\vec {a}}\xi )=1\). By (6.13) and (6.14) we obtain

$$\begin{aligned} 1=&\sum \limits _{m=1}^N{\textstyle \left( {\begin{array}{c}N\\ m\end{array}}\right) }{\hat{\varphi }}(\xi )^{2m}(1-{\hat{\varphi }}(\xi )^2)^{N-m}\\&+\;\sum \limits _{k=1}^\infty \sum \limits _{m=1}^N {\textstyle \left( {\begin{array}{c}N\\ m\end{array}}\right) } \bigg [{\hat{\varphi }}(2^{-k\vec {a}}\xi )^2-{\hat{\varphi }}(2^{-(k-1)\vec {a}}\xi )^2 \bigg ]^m \big (1-{\hat{\varphi }}(2^{-k\vec {a}}\xi )^2 \big )^{N-m}. \end{aligned}$$

It follows that

$$\begin{aligned} 1={\hat{\psi }}(\xi ){\hat{\varphi }}(\xi )+\sum \limits _{k=1}^\infty {\widehat{\Psi }}(2^{-k\vec {a}}\xi )\Big ({\hat{\varphi }}(2^{-k\vec {a}}\xi )- {\hat{\varphi }}(2^{-(k-1)\vec {a}}\xi )\Big ), \end{aligned}$$
(6.15)

where

$$\begin{aligned} {\hat{\psi }}(\xi ):=\sum \limits _{m=1}^N{\textstyle \left( {\begin{array}{c}N\\ m\end{array}}\right) }{\hat{\varphi }}(\xi )^{2m-1}(1-{\hat{\varphi }}(\xi )^2)^{N-m} \end{aligned}$$

and

$$\begin{aligned} {\widehat{\Psi }}(\xi ):=\Big ({\hat{\varphi }}(\xi )+{\hat{\varphi }}(2^{\vec {a}}\xi )\Big )\sum \limits _{m=1}^N{\textstyle \left( {\begin{array}{c}N\\ m\end{array}}\right) } \bigg [{\hat{\varphi }}(\xi )^2-{\hat{\varphi }}(2^{\vec {a}}\xi )^2\bigg ]^{m-1}(1-{\hat{\varphi }}(\xi )^2)^{N-m}. \end{aligned}$$

It is easy to see that

$$\begin{aligned} \partial ^\alpha {\widehat{\Psi }}(0)=0,\;\;\text {for every}\;\;|\alpha |\le N-2=M, \end{aligned}$$

so \(\Psi \in {\mathcal {S}}_M\). We write (6.15) with \(\xi \) be replaced by \(2^{-\vec {a}}\xi \)

$$\begin{aligned} 1={\hat{\psi }}(2^{-\vec {a}}\xi ){\hat{\varphi }}(2^{-\vec {a}}\xi )+\sum \limits _{k=2}^\infty {\widehat{\Psi }}(2^{-k\vec {a}}\xi )\Big ({\hat{\varphi }}(2^{-k\vec {a}}\xi )- {\hat{\varphi }}(2^{-(k-1)\vec {a}}\xi )\Big ) \end{aligned}$$
(6.16)

and subtract (6.16) from (6.15) to get

$$\begin{aligned} {\widehat{\Psi }}(2^{-\vec {a}}\xi )\Big ({\hat{\varphi }}(2^{-\vec {a}}\xi )-{\hat{\varphi }}(\xi )\Big )= {\hat{\psi }}(2^{-\vec {a}}\xi ){\hat{\varphi }}(2^{-\vec {a}}\xi )-{\hat{\psi }}(\xi ){\hat{\varphi }}(\xi ). \end{aligned}$$
(6.17)

Let \(m>j\) and \(f\in {\mathcal {S}}'\). Then by (6.17)

$$\begin{aligned} {\hat{\psi }}(2^{-j\vec {a}}\xi ){\hat{\varphi }}(2^{-j\vec {a}}\xi ){\hat{f}}(\xi )&+ \sum \limits _{k=j+1}^m {\widehat{\Psi }}(2^{-k\vec {a}}\xi )\Big ({\hat{\varphi }}(2^{-k\vec {a}}\xi )- {\hat{\varphi }}(2^{-(k-1)\vec {a}}\xi )\Big ){\hat{f}}(\xi )\\&={\hat{\psi }}(2^{-m\vec {a}}\xi ){\hat{\varphi }}(2^{-m\vec {a}}\xi ){\hat{f}}(\xi )\rightarrow {\hat{f}}(\xi )\;\;\text {as}\;\;m\rightarrow \infty . \end{aligned}$$

Now (4.13) follows simply by inverting the Fourier transform. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cleanthous, G., Georgiadis, A.G. & Nielsen, M. Anisotropic Mixed-Norm Hardy Spaces. J Geom Anal 27, 2758–2787 (2017). https://doi.org/10.1007/s12220-017-9781-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-017-9781-8

Keywords

Mathematics Subject Classification

Navigation