Skip to main content
Log in

Desingularizing positive scalar curvature 4-manifolds

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We show that the bordism group of closed 3-manifolds with positive scalar curvature (psc) metrics is trivial by explicit methods. Our constructions are derived from scalar-flat Kähler ALE surfaces discovered by Lock-Viaclovsky. Next, we study psc 4-manifolds with metric singularities along points and embedded circles. Our psc null-bordisms are essential tools in a desingularization process developed by Li-Mantoulidis. This allows us to prove a non-existence result for singular psc metrics on enlargeable 4-manifolds with uniformly Euclidean geometry. As a consequence, we obtain a positive mass theorem for asymptotically flat 4-manifolds with non-negative scalar curvature and low regularity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Akutagawa, Kazuo, Botvinnik, Boris: Manifolds of positive scalar curvature and conformal cobordism theory. Math. Ann. 324(4), 817–840 (2002)

    Article  MathSciNet  Google Scholar 

  2. Bartnik, R.: The mass of an asymptotically flat manifold. Commun. Pure Appl. Math. 39(5), 661–693 (1986)

    Article  MathSciNet  Google Scholar 

  3. Botvinnik, B., Ebert, J., Randal-Williams, O.: Infinite loop spaces and positive scalar curvature. Invent. Math. 209(3), 749–835 (2017)

    Article  MathSciNet  Google Scholar 

  4. Calderbank, D.M.J., Singer, M.A.: Einstein metrics and complex singularities. Invent. Math. 156(2), 405–443 (2004)

    Article  MathSciNet  Google Scholar 

  5. Carlotto, A., Li, C.: Constrained deformations of positive scalar curvature metrics. arXiv:1903.11772 (2019)

  6. Carr, R.: Construction of manifolds of positive scalar curvature. Trans. Am. Math. Soc. 307(1), 63–74 (1988)

    Article  MathSciNet  Google Scholar 

  7. Cecchini, S., Schick T.: Enlargeable metrics on nonspin manifolds. arXiv:1810.02116 (2018)

  8. Chruściel, P.: Boundary conditions at spatial infinity from a Hamiltonian point of view. In: Topological Properties and Global Structure of Space–time (Erice, 1985), vol. 138. NATO Advanced Science Institute Series B Physics, pp. 49–59. Plenum, New York (1986)

  9. Dahl, M.: The positive mass theorem for ALE manifolds. In: Mathematics of Gravitation, Part I (Warsaw, 1996), vol. 41. Banach Center Publications, pp. 133–142. The Institute of Mathematics of the Polish Academy of Sciences, Warsaw (1997)

  10. Donald, A.: Embedding Seifert manifolds in \(S^4\). Trans. Am. Math. Soc. 367(1), 559–595 (2015)

    Article  MathSciNet  Google Scholar 

  11. Escobar, J.F.: Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature on the boundary. Ann. Math. (2) 136(1), 1–50 (1992)

    Article  MathSciNet  Google Scholar 

  12. Escobar, J.F.: Conformal deformation of a Riemannian metric to a constant scalar curvature metric with constant mean curvature on the boundary. Indiana Univ. Math. J. 45(4), 917–943 (1996)

    Article  MathSciNet  Google Scholar 

  13. Federer, H.: Geometric measure theory. In: Die Grundlehren der Mathematischen Wissenschaften, Band 153. Springer, New York (1969)

  14. Fogagnolo, M., Mazzieri, L.: Minimising hulls, \(p\)-capacity and isoperimetric inequality on complete Riemannian manifolds. J. Funct. Anal. 283(9), 109638 (2022)

    Article  MathSciNet  Google Scholar 

  15. Gromov, M.: Metric structures for Riemannian and non-Riemannian spaces, vol. 152. In: Progress in Mathematics. Birkhäuser Boston Inc., Boston (1999) (based on the 1981 French original [MR0682063 (85e:53051)], with appendices by M. Katz, P. Pansu and S. Semmes, translated from the French by Sean Michael Bates)

  16. Gromov, M.: Dirac and Plateau billiards in domains with corners. Cent. Eur. J. Math. 12(8), 1109–1156 (2014)

    MathSciNet  Google Scholar 

  17. Gromov, M.: Metric inequalities with scalar curvature. Geom. Funct. Anal. 28(3), 645–726 (2018)

    Article  MathSciNet  Google Scholar 

  18. Gromov, M., Lawson, H., Blaine, J.: Spin and scalar curvature in the presence of a fundamental group I. Ann. Math. (2) 111(2), 209–230 (1980)

    Article  MathSciNet  Google Scholar 

  19. Gromov, M., Lawson, H., Blaine, J.: The classification of simply connected manifolds of positive scalar curvature. Ann. Math. (2) 111(3), 423–434 (1980)

  20. Gromov, M., Lawson, H., Blaine, J.: Positive scalar curvature and the Dirac operator on complete Riemannian manifolds. Inst. Hautes Études Sci. Publ. Math. 58, 83–196 (1984)

    Article  MathSciNet  Google Scholar 

  21. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  22. Hawking, S.W.: Gravitational instantons. Phys. Lett. A 60(2), 81–83 (1977)

    Article  MathSciNet  Google Scholar 

  23. Hebey, Emmanuel: Nonlinear analysis on manifolds: Sobolev spaces and inequalities, vol. 5. In: Courant Lecture Notes in Mathematics. New York University, Courant Institute of Mathematical Sciences, New York/American Mathematical Society, Providence (1999)

  24. Kronheimer, P.B.: The construction of ALE spaces as hyper-Kähler quotients. J. Differ. Geom. 29(3), 665–683 (1989)

    Article  MathSciNet  Google Scholar 

  25. Kronheimer, P.B.: A Torelli-type theorem for gravitational instantons. J. Differ. Geom. 29(3), 685–697 (1989)

    Article  MathSciNet  Google Scholar 

  26. LeBrun, C.: Counter-examples to the generalized positive action conjecture. Commun. Math. Phys. 118(4), 591–596 (1988)

    Article  MathSciNet  Google Scholar 

  27. Lee, D.A., LeFloch, P.G.: The positive mass theorem for manifolds with distributional curvature. Commun. Math. Phys. 339(1), 99–120 (2015)

    Article  MathSciNet  Google Scholar 

  28. Li, C., Mantoulidis, C.: Positive scalar curvature with skeleton singularities (2017)

  29. Littman, W., Stampacchia, G., Weinberger, H.F.: Regular points for elliptic equations with discontinuous coefficients. Ann. Scuola Norm. Sup. Pisa 3(17), 43–77 (1963)

    MathSciNet  Google Scholar 

  30. Lock, M.T., Viaclovsky, J.A.: A smörgåsbord of scalar-flat Kähler ALE surfaces. J. Reine Angew. Math. 746, 171–208 (2019)

    Article  MathSciNet  Google Scholar 

  31. Lohkamp, J.: Scalar curvature and hammocks. Math. Ann. 313(3), 385–407 (1999)

    Article  MathSciNet  Google Scholar 

  32. Lohkamp, J.: The higher dimensional positive mass theorem II. arXiv:1612.07505 (2016)

  33. Mantoulidis, C., Schoen, R.: On the Bartnik mass of apparent horizons. Class. Quantum Grav. 32(20), 205002 (2015)

    Article  MathSciNet  Google Scholar 

  34. Marques, F.C.: Deforming three-manifolds with positive scalar curvature. Ann. Math. (2) 176(2), 815–863 (2012)

    Article  MathSciNet  Google Scholar 

  35. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv:math/0211159 (2002)

  36. Perelman, G.: Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. arXiv:math/0307245 (2003)

  37. Perelman, G.: Ricci flow with surgery on three-manifolds. arXiv:math/0303109 (2003)

  38. Richard Schoen and Shing Tung Yau: On the proof of the positive mass conjecture in general relativity. Commun. Math. Phys. 65(1), 45–76 (1979)

    Article  MathSciNet  Google Scholar 

  39. Rohlin, V. A.: A three-dimensional manifold is the boundary of a four-dimensional one. Dokl. Akad. Nauk. SSSR (N.S.) 81, 355–357 (1951)

  40. Rosenberg, J.: Manifolds of positive scalar curvature: a progress report. In: Surveys in Differential Geometry, vol. XI, pp. 259–294. International Press, Somerville (2007)

  41. Ruberman, D.: Positive scalar curvature, diffeomorphisms and the Seiberg–Witten invariants. Geom. Topol. 5, 895–924 (2001)

    Article  MathSciNet  Google Scholar 

  42. Schoen, R.M.: Variational theory for the total scalar curvature functional for Riemannian metrics and related topics. In: Topics in calculus of variations (Montecatini Terme, 1987), vol. 1365. Lecture Notes in Mathematics, pp. 120–154. Springer, Berlin (1989)

  43. Schoen, R., Yau, S.T.: On the structure of manifolds with positive scalar curvature. Manuscr. Math. 28(1–3), 159–183 (1979)

    Article  MathSciNet  Google Scholar 

  44. Schoen, R., Yau, S.T.: Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature. Ann. Math. (2) 110(1), 127–142 (1979)

    Article  MathSciNet  Google Scholar 

  45. Schoen, R., Yau, S.-T.: Positive scalar curvature and minimal hypersurface singularities. arXiv:1704.05490 (2017)

  46. Scott, P.: The geometries of \(3\)-manifolds. Bull. Lond. Math. Soc. 15(5), 401–487 (1983)

    Article  MathSciNet  Google Scholar 

  47. Thom, R.: Quelques propriétés globales des variétés différentiables. Comment. Math. Helv. 28, 17–86 (1954)

    Article  MathSciNet  Google Scholar 

  48. Walsh, M.: The space of positive scalar curvature metrics on a manifold with boundary. arXiv:1411.2423 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demetre Kazaras.

Ethics declarations

Conflict of interest

The author states that there is no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

In this section we will provide some details on the minimization problem found in Claim 1 during the proof of Theorem A. The argument we present here is only a slight modification of the proof of [28, Lemma 6.1].

Some notation: if (Mg) is a Riemannian manifold and k is some whole number, we write \({\mathcal {H}}_g^{k}\) for the k-dimensional Hausdorff measure associated with g.

Lemma 2

Suppose \(g'\) is a smooth metric on \({\mathbb {R}}^2\times S^2\) which satisfies

$$\begin{aligned} \lambda ^{-1}(g_{{\mathbb {H}}^2}+g_{S^2})\le g'\le \lambda (g_{{\mathbb {H}}^2}+g_{S^2}) \end{aligned}$$
(26)

for a positive constant \(\lambda \). Then there exists a radius R so that the minimization problem

$$\begin{aligned} V=\inf \{{\mathcal {H}}^{3}_{g'}(\partial \Omega ):\Omega \subset {\mathbb {R}}^2\times S^2\text { open, containing }B_1(0)\times S^2\} \end{aligned}$$
(27)

is solved by an open set lying within \(B_R(0)\times S^2\subset {\mathbb {R}}^2\times S^2\).

Proof

A solution to problem (27) is known as an outer minimizing hull of the region \(B_1(0)\times S^2\). According to a result of Fogagnolo-Mazzieri [14, Theorem 1.1], such an outward minimizing hull exists and is given by a bounded subset of \({\mathbb {R}}^2\times S^2\) so long as \(({\mathbb {R}}^2\times S^2,g')\) satisfies the following Euclidean isoperimetric inequality: there is a constant \(C>0\) so that

$$\begin{aligned} {\mathcal {H}}^4_{g'}(\Omega )\le C{\mathcal {H}}^{3}_{g'}(\partial \Omega )^{\frac{4}{3}} \end{aligned}$$
(28)

for all bounded regions \(\Omega \subset {\mathbb {R}}^2\times S^2\) with smooth boundary. As such, we aim to establish (28).

Leveraging the uniformity assumption (26), it suffices to establish an Euclidean isoperimentric inequality for the product manifold \(M_*:=({\mathbb {R}}^2\times S^2,g_{{\mathbb {H}}^2}+g_{S^2})\). To this end, suppose we are given an open set \(\Omega \subset M_*\) with smooth boundary. When \(\Omega \) has sufficiently small volume, the inequality (28) follows from a classical argument using the fact that \(M_*\) satisfies a Ricci curvature lower bound \(\textrm{Ric}^{M_*}\ge -g\) and a noncollapsing condition \(\textrm{Vol}_{M_*}(B_1(p))\ge 1\). Namely, the result [23, Lemma 3.2] implies there is an \(\eta >0\) and constant C so that any \(\Omega \subset M_*\) with \({\mathcal {H}}^4(\Omega )\le \eta \) satisfies inequality (28). Now assume \({\mathcal {H}}^4(\Omega )\ge \eta \). The result [15, Theorem 6.19] states that such \(\Omega \) satisfy the same isoperimetric inequality as the one satisfied by the fundamental group of any manifold covered by \(M_*\). Since \(M_*\) covers manifolds with hyperbolic fundamental group, we conclude the existence of a \(C'>0\) such that the linear inequality \({\mathcal {H}}^4(\Omega )\le C'{\mathcal {H}}^3(\partial \Omega )\) holds, from which the Euclidean inequality (28) quickly follows. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazaras, D. Desingularizing positive scalar curvature 4-manifolds. Math. Ann. (2024). https://doi.org/10.1007/s00208-024-02829-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00208-024-02829-5

Mathematics Subject Classification

Navigation