Skip to main content
Log in

On Sobolev spaces of bounded subanalytic manifolds

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We focus on the Sobolev spaces of bounded subanalytic submanifolds of \(\mathbb {R}^n\). We prove that if M is such a manifold then the space \(\mathscr {C}_0^\infty (M)\) is dense in \(W^{1,p}(M,\partial M)\) (the kernel of the trace operator) for all \(p\le \mathbf {p_{_M}}\), where \(\mathbf {p_{_M}}\) is the codimension in M of the singular locus of \( {\overline{M}}{\setminus } M\) (which is always at least 2). In the case where M is normal, i.e. when \(\textbf{B}(x_0,\varepsilon )\cap M\) is connected for every \(x_0\in {\overline{M}}\) and \(\varepsilon >0\) small, we show that \(\mathscr {C}^\infty ( {\overline{M}})\) is dense in \(W^{1,p}(M)\) for all such p. This yields some duality results between \(W^{1,p}({\Omega },\partial {\Omega })\) and \(W^{-1,p'}({\Omega })\) in the case where \(1< p\le \mathbf {p_{_{\Omega }}}\) and \({\Omega }\) is a bounded subanalytic open subset of \(\mathbb {R}^n\). As a byproduct, we deduce uniqueness of the (weak) solution of the Dirichlet problem associated with the Laplace equation. We then prove a version of Sobolev’s Embedding Theorem for subanalytic bounded manifolds, show Gagliardo–Nirenberg’s inequality (for all \(p\in [1,\infty )\)), and derive some versions of Poincaré–Friedrichs’ inequality. We finish with a generalization of Morrey’s Embedding Theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. We only have to show (6.2) for a function u which is smooth up to the boundary but since we argue up to a bi-Lipschitz trivialization of the stratification we will establish it for \(u\in \mathscr {C}^{0,1}(\overline{U_0^\varepsilon })\).

References

  1. Adams, A.: Some integral inequalities with applications to the imbedding of Sobolev spaces defined over irregular domains. Trans. Am. Math. Soc. 178, 401–429 (1973)

    Article  MathSciNet  Google Scholar 

  2. Bierstone, E., Milman, P.D.: Semianalytic and subanalytic sets. Inst. Hautes Etudes. Publ. Math. No. 67, 5–42 (1988)

    Article  MathSciNet  Google Scholar 

  3. Bochnak, J., Coste, M., Roy, M.-F.: Géométrie Algébrique Réelle. Springer, Berlin (1987)

    Google Scholar 

  4. Bos, L.P., Milman, P.D.: Sobolev–Gagliardo–Nirenberg and Markov type inequalities on subanalytic domains. Geom. Funct. Anal. 5, 853–923 (1995)

    Article  MathSciNet  Google Scholar 

  5. Boyer, F., Fabrie, P.: Mathematical Tools for the Study of the Incompressible Navier–Stokes Equations and Related Models. Applied Mathematical Sciences, vol. 183. Springer, New York (2013)

    Google Scholar 

  6. Coste, M.: An introduction to o-minimal geometry, Dip. Mat. Univ. Pisa, Dottorato di Ricerca in Matematica, Istituti Editoriali e Poligrafici Internazionali, Pisa (2000)

  7. Denkowska, Z., Stasica, J.: Ensembles Sous-analytiques à la Polonaise. Editions Hermann, Paris (2007)

    Google Scholar 

  8. Deny, J., Lions, J.-L.: Les espaces du type de Beppo Levi. Annales de l’institut Fourier, tome 5, 305–370 (1954)

    Article  Google Scholar 

  9. de Rham, G.: Differential Manifolds. English translation of “Variétés différentiables”. Springer (1980)

  10. Gol’dshtein, V.M., Kuz’minov, V.I., Shvedov, I.A.: A property of de Rham regularization operators. Siberian Math. J. 25(2), 104–111 (1984)

    MathSciNet  Google Scholar 

  11. Goresky, M., MacPherson, R.: Intersection homology theory. Topology 19(2), 135–162 (1980)

    Article  MathSciNet  Google Scholar 

  12. Halupczok, I., Yin, Y.: Lipschitz stratifications in power-bounded o-minimal fields. J. Eur. Math. Soc. 20(11), 2717–2767 (2018)

    Article  MathSciNet  Google Scholar 

  13. Kaiser, T.: Dirichlet regularity in arbitrary o-minimal structures on the field \({\mathbb{R} }\) up to dimension 4. Math. Nach. 279(15), 1669–1683 (2006)

    Article  MathSciNet  Google Scholar 

  14. Kaiser, T.: Dirichlet regularity of subanalytic domains. Trans. Am. Math. Soc. 360(12), 6573–6594 (2008)

    Article  MathSciNet  Google Scholar 

  15. Lion, J.-M., Rolin, J.-P.: Intégration des fonctions sous-analytiques et volumes des sous-ensembles sous-analytiques. Ann. Inst. Fourrier (Grenoble) 48(3), 755–76 (1998)

    Article  Google Scholar 

  16. Łojasiewicz, S.: Sur le problème de la division. Stud. Math. 18(1), 87–136 (1959)

    Article  Google Scholar 

  17. Łojasiewicz, S.: Ensembles Semi-analytiques, IHES (1965). Available at: https://perso.univ-rennes1.fr/michel.coste/Lojasiewicz.pdf

  18. Mazya, V.: Sobolev Spaces with Applications to Elliptic Partial Differential Equations. Springer, Berlin, Heidelberg (2011)

    Book  Google Scholar 

  19. McCrory, C.: Stratified General Position, Algebraic and Geometric Topology. Springer Lecture Notes in Mathematics, vol. 664, pp. 142–146. Springer, New York (1978)

    Book  Google Scholar 

  20. Mostowski, T.: Lipschitz Equisingularity, Dissertationes Math., CCXLIII. PWN, Warszawa (1985)

  21. Nguyen, N., Valette, G.: Lipschitz stratifications in o-minimal structures. Ann. Sci. Ecole Norm. Sup. (4) 49(2), 399–421 (2016)

    Article  MathSciNet  Google Scholar 

  22. Parusiński, A.: Lipschitz stratification of subanalytic sets. Ann. Sci. Ecole Norm. Sup. (4) 27(6), 661–696 (1994)

  23. Valette, A., Valette, G.: Trace operators on bounded subanalytic manifolds. arxiv:2101.10701v2

  24. Valette, G.: On Subanalytic Geometry, Survey. Available at http://www2.im.uj.edu.pl/gkw/sub.pdf

  25. Valette, G.: Lipschitz triangulations. Ill. J. Math. 49(3), 953–979 (2005)

    MathSciNet  Google Scholar 

  26. Valette, A.: Łojasiewicz inequality at singular points. P. Am. Math. Soc. 147, 1109–1117 (2019)

    Article  Google Scholar 

  27. Valette, G.: Poincaré duality for \(L^p\) cohomology on subanalytic singular spaces. Matematische Annalen 380, 789–823 (2021)

    Article  Google Scholar 

  28. Valette, A., Valette, G.: Poincaré inequality on subanalytic sets. J. Geom. Anal. 31, 10464–10472 (2021)

    Article  MathSciNet  Google Scholar 

  29. Valette, G.: Regular vectors and bi-Lipschitz trivial stratifications in o-minimal structures. In: Handbook of Geometry and Topology of Singularities IV. Springer (2023)

  30. Valette, A., Valette, G.: Uniform Poincaré inequality in o-minimal structures. Math. Inequal. Appl. 26, 141–150 (2023)

    MathSciNet  Google Scholar 

  31. van den Dries, L.: Tame Topology and O-minimal Structures. London Mathematical Society Lecture Note Series, vol. 248, p. x+180. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

Download references

Funding

The funding has been received from Narodowe Centrum Nauki with Grant no. 2021/43/B/ST1/02359.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Valette.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valette, G. On Sobolev spaces of bounded subanalytic manifolds. Math. Ann. (2024). https://doi.org/10.1007/s00208-024-02810-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00208-024-02810-2

Mathematics Subject Classification

Navigation