Skip to main content
Log in

Global well-posedness to the Cauchy problem of 2D compressible nematic liquid crystal flows with large initial data and vacuum

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We study compressible nematic liquid crystal flows with the bulk viscosity being a power function of the density (\(\lambda =\rho ^\beta \)) on the whole two-dimensional (2D) plane. Under a geometric angle condition for the initial direction field, we show the global existence and uniqueness of strong solutions provided that \(\beta >\frac{4}{3}\). It should be noticed that there is no other restrictions on the size of initial data and the initial density allows vacuum states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Brézis, H., Wainger, S.: A note on limiting cases of Sobolev embeddings and convolution inequalities. Commun. Partial Differ. Equ. 5(7), 773–789 (1980)

    Article  MathSciNet  Google Scholar 

  2. Chang, K.C., Ding, W.Y., Ye, R.: Finite-time blow-up of the heat flow of harmonic maps from surfaces. J. Differ. Geom. 36(2), 507–515 (1992)

    Article  MathSciNet  Google Scholar 

  3. Cho, Y., Choe, H.J., Kim, H.: Unique solvability of the initial boundary value problems for compressible viscous fluids. J. Math. Pures Appl. 83(2), 243–275 (2004)

    Article  MathSciNet  Google Scholar 

  4. Coifman, R.R., Meyer, Y.: On commutators of singular integrals and bilinear singular integrals. Trans. Am. Math. Soc. 212, 315–331 (1975)

    Article  MathSciNet  Google Scholar 

  5. Coifman, R.R., Rochberg, R., Weiss, G.: Factorization theorems for Hardy spaces in several variables. Ann. Math. 103(3), 611–635 (1976)

    Article  MathSciNet  Google Scholar 

  6. Coifman, R.R., Lions, P.L., Meyer, Y., Semmes, S.: Compensated compactness and Hardy spaces. J. Math. Pures Appl. 72(3), 247–286 (1993)

    MathSciNet  Google Scholar 

  7. de Gennes, P.G., Prost, J.: The Physics of Liquid Crystals, 2nd edn. Oxford University Press, New York (1995)

    Google Scholar 

  8. Engler, H.: An alternative proof of the Brezis–Wainger inequality. Commun. Partial Differ. Equ. 14(4), 541–544 (1989)

    Article  MathSciNet  Google Scholar 

  9. Ericksen, J.L.: Conservation laws for liquid crystals. Trans. Soc. Rheol. 5, 23–34 (1961)

    Article  MathSciNet  Google Scholar 

  10. Fan, X., Li, J., Li, J.: Global existence of strong and weak solutions to 2D compressible Navier–Stokes system in bounded domains with large data and vacuum. Arch. Ration. Mech. Anal. 245(1), 239–278 (2022)

    Article  MathSciNet  Google Scholar 

  11. Fefferman, C.: Characterizations of bounded mean oscillation. Bull. Am. Math. Soc. 77, 587–588 (1971)

    Article  MathSciNet  Google Scholar 

  12. Frank, F.C.: On the theory of liquid crystals. Discuss. Faraday Soc. 25, 19–28 (1958)

    Article  Google Scholar 

  13. Gao, J., Tao, Q., Yao, Z.: Long-time behavior of solution for the compressible nematic liquid crystal flows in \({\mathbb{R} }^3\). J. Differ. Equ. 261(4), 2334–2383 (2016)

    Article  Google Scholar 

  14. Hu, X., Wu, H.: Global solution to the three-dimensional compressible flow of liquid crystals. SIAM J. Math. Anal. 45(5), 2678–2699 (2013)

    Article  MathSciNet  Google Scholar 

  15. Huang, X., Li, J.: Existence and blowup behavior of global strong solutions to the two-dimensional barotrpic compressible Navier–Stokes system with vacuum and large initial data. J. Math. Pures Appl. 106(1), 123–154 (2016)

    Article  MathSciNet  Google Scholar 

  16. Huang, X., Li, J.: Global well-posedness of classical solutions to the Cauchy problem of two-dimensional barotropic compressible Navier–Stokes system with vacuum and large initial data. SIAM J. Math. Anal. 54(3), 3192–3214 (2022)

    Article  MathSciNet  Google Scholar 

  17. Huang, X., Li, J., Xin, Z.: Serrin type criterion for the three-dimensional compressible flows. SIAM J. Math. Anal. 43(4), 1872–1886 (2011)

    Article  MathSciNet  Google Scholar 

  18. Huang, T., Wang, C., Wen, H.: Strong solutions of the compressible nematic liquid crystal flow. J. Differ. Equ. 252(3), 2222–2265 (2012)

    Article  MathSciNet  Google Scholar 

  19. Jiang, F., Jiang, S., Wang, D.: On multi-dimensional compressible flows of nematic liquid crystals with large initial energy in a bounded domain. J. Funct. Anal. 265(12), 3369–3397 (2013)

    Article  MathSciNet  Google Scholar 

  20. Jiang, F., Jiang, S., Wang, D.: Global weak solutions to the equations of compressible flow of nematic liquid crystals in two dimensions. Arch. Ration. Mech. Anal. 214(2), 403–451 (2014)

    Article  MathSciNet  Google Scholar 

  21. Jiu, Q., Wang, Y. & Xin, Z. Global classical solution to two-dimensional compressible Navier–Stokes equations with large data in \({\mathbb{R}}^2\). J. Phys. D. 376/377, 180–194 (2018) (corrigendum to “Global classical solution to two-dimensional compressible Navier–Stokes equations with large data in \({\mathbb{R}}^2\)”. Phys. D 414 , paper no. 132726, 2020)

  22. Jiu, Q., Wang, Y., Xin, Z.: Global well-posedness of the Cauchy problem of two-dimensional compressible Navier–Stokes equations in weighted spaces. J. Differ. Equ. 255(3), 351–404 (2013)

    Article  MathSciNet  Google Scholar 

  23. Jiu, Q., Wang, Y., Xin, Z.: Global well-posedness of 2D compressible Navier–Stokes equations with large data and vacuum. J. Math. Fluid Mech. 16(3), 483–521 (2014)

    Article  MathSciNet  Google Scholar 

  24. Lei, Z., Li, D., Zhang, X.: Remarks of global wellposedness of liquid crystal flows and heat flows of harmonic maps in two dimensions. Proc. Am. Math. Soc. 142(11), 3801–3810 (2014)

    Article  MathSciNet  Google Scholar 

  25. Leslie, F.M.: Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 28(4), 265–283 (1968)

    Article  MathSciNet  Google Scholar 

  26. Li, J., Liang, Z.: On local solutions to the Cauchy problem of the two-dimensional barotropic compressible Navier–Stokes equations with vaccum. J. Math. Pures Appl. 102(4), 640–671 (2014)

    Article  MathSciNet  Google Scholar 

  27. Li, J., Xu, Z., Zhang, J.: Global existence of classical solutions with large oscillations and vacuum to the three-dimensional compressible nematic liquid crystal flows. J. Math. Fluid Mech. 20(4), 2105–2145 (2018)

    Article  MathSciNet  Google Scholar 

  28. Lin, J., Lai, B., Wang, C.: Global finite energy weak solutions to the compressible nematic liquid crystal flow in dimension three. SIAM J. Math. Anal. 47(4), 2952–2983 (2015)

    Article  MathSciNet  Google Scholar 

  29. Lions, P.L.: Compressible Models. Mathematical topics in fluid mechanics, vol. II. Oxford University Press, New York (1998)

    Google Scholar 

  30. Liu, Y., Zhong, X.: Global existence of strong solutions with large oscillations and vacuum to the compressible nematic liquid crystal flows in 3D bounded domains. Discrete Contin. Dyn. Syst. Ser. B. (2021). https://doi.org/10.3934/dcdsb.2023172

    Article  Google Scholar 

  31. Liu, Y., Zheng, S., Li, H., Liu, S.: Strong solutions to Cauchy problem of 2D compressible nematic liquid crystal flows. Discrete Contin. Dyn. Syst. 37(7), 3921–3938 (2017)

    Article  MathSciNet  Google Scholar 

  32. Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 13(2), 115–162 (1959)

    MathSciNet  Google Scholar 

  33. Novotný, A., Straškraba, I.: Introduction to the Mathematical Theory of Compressible Flow. Oxford University Press, Oxford (2004)

    Book  Google Scholar 

  34. Oseen, C.W.: The theory of liquid crystals. Trans. Faraday Soc. 29, 883–899 (1933)

    Article  Google Scholar 

  35. Perepelitsa, M.: On the global existence of weak solutions for the Navier–Stokes equations of compressible fluid flows. SIAM J. Math. Anal. 38(4), 1126–1153 (2006)

    Article  MathSciNet  Google Scholar 

  36. Schade, K., Shibata, Y.: On strong dynamics of compressible nematic liquid crystals. SIAM J. Math. Anal. 47(5), 3963–3992 (2015)

    Article  MathSciNet  Google Scholar 

  37. Stewart, I.W.: The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction. CRC Press, Boca Raton (2004)

    Google Scholar 

  38. Sun, Y., Zhong, X.: Global strong solutions to the compressible nematic liquid crystal flows with large oscillations and vacuum in 2D bounded domains. J. Geom. Anal. (paper no. 319) 33, 10 (2023)

    MathSciNet  Google Scholar 

  39. Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110, 353–372 (1976)

    Article  MathSciNet  Google Scholar 

  40. Vaigant, V.A., Kazhikhov, A.V.: On the existence of global solutions of two-dimensional Navier–Stokes equations of a compressible viscous fluid. Sib. Math. J. 36(6), 1108–1141 (1995)

    Article  MathSciNet  Google Scholar 

  41. Wang, C.: Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data. Arch. Ration. Mech. Anal. 200(1), 1–19 (2011)

    Article  MathSciNet  Google Scholar 

  42. Wang, T.: Global existence and large time behavior of strong solutions to the 2-D compressible nematic liquid crystal flows with vacuum. J. Math. Fluid Mech. 18(3), 539–569 (2016)

    Article  MathSciNet  Google Scholar 

  43. Wang, D., Yu, C.: Global weak solution and large-time behavior for the compressible flow of liquid crystals. Arch. Ration. Mech. Anal. 204(3), 881–915 (2012)

    Article  MathSciNet  Google Scholar 

  44. Wu, G., Tan, Z.: Global low-energy weak solution and large-time behavior for the compressible flow of liquid crystals. J. Differ. Equ. 264(11), 6603–6632 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the reviewers for careful reading and helpful suggestions which led to an improvement of the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhong.

Ethics declarations

Conflict of interest

The authors have no conflicts to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was partially supported by National Natural Science Foundation of China (No. 12371227).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, X., Zhou, X. Global well-posedness to the Cauchy problem of 2D compressible nematic liquid crystal flows with large initial data and vacuum. Math. Ann. (2024). https://doi.org/10.1007/s00208-023-02794-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00208-023-02794-5

Mathematics Subject Classification

Navigation